vector algebra
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 32)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
pp. 15-28
Author(s):  
Boris Khots
Keyword(s):  

2021 ◽  
pp. 1-13
Author(s):  
Carlos Polanco
Keyword(s):  

2021 ◽  
pp. 189-209
Author(s):  
Garret Sobczyk

Clifford's geometric algebra has enjoyed phenomenal development over the last 60 years by mathematicians, theoretical physicists, engineers, and computer scientists in robotics, artificial intelligence and data analysis, introducing a myriad of different and often confusing notations. The geometric algebra of Euclidean 3-space, the natural generalization of both the well-known Gibbs-Heaviside vector algebra and Hamilton's quaternions, is used here to study spheroidal domains, spheroidal-graphic projections, the Laplace equation, and its Lie algebra of symmetries. The Cauchy-Kovalevska extension and the Cauchy kernel function are treated in a unified way. The concept of a quasi-monogenic family of functions is introduced and studied. 


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1117
Author(s):  
Martin B. van der Mark ◽  
John G. Williamson

A general formula for inversion in a relativistic Clifford–Dirac algebra has been derived. Identifying the base elements of the algebra as those of space and time, the first order differential equations over all quantities proves to encompass the Maxwell equations, leads to a natural extension incorporating rest mass and spin, and allows an integration with relativistic quantum mechanics. Although the algebra is not a division algebra, it parallels reality well: where division is undefined turns out to correspond to physical limits, such as that of the light cone. The divisor corresponds to invariants of dynamical significance, such as the invariant interval, the general invariant quantities in electromagnetism, and the basis set of quantities in the Dirac equation. It is speculated that the apparent 3-dimensionality of nature arises from a beautiful symmetry between the three-vector algebra and each of four sets of three derived spaces in the full 4-dimensional algebra. It is conjectured that elements of inversion may play a role in the interaction of fields and matter.


2021 ◽  
Vol 4 ◽  
Author(s):  
G. Unel ◽  
S. Sekmen ◽  
A. M. Toon ◽  
B. Gokturk ◽  
B. Orgen ◽  
...  

We will present the latest developments in CutLang, the runtime interpreter of a recently-developed analysis description language (ADL) for collider data analysis. ADL is a domain-specific, declarative language that describes the contents of an analysis in a standard and unambiguous way, independent of any computing framework. In ADL, analyses are written in human-readable plain text files, separating object, variable and event selection definitions in blocks, with a syntax that includes mathematical and logical operations, comparison and optimisation operators, reducers, four-vector algebra and commonly used functions. Adopting ADLs would bring numerous benefits to the LHC experimental and phenomenological communities, ranging from analysis preservation beyond the lifetimes of experiments or analysis software to facilitating the abstraction, design, visualization, validation, combination, reproduction, interpretation and overall communication of the analysis contents. Since their initial release, ADL and CutLang have been used for implementing and running numerous LHC analyses. In this process, the original syntax from CutLang v1 has been modified for better ADL compatibility, and the interpreter has been adapted to work with that syntax, resulting in the current release v2. Furthermore, CutLang has been enhanced to handle object combinatorics, to include tables and weights, to save events at any analysis stage, to benefit from multi-core/multi-CPU hardware among other improvements. In this contribution, these and other enhancements are discussed in details. In addition, real life examples from LHC analyses are presented together with a user manual.


2021 ◽  
Vol 9 (6) ◽  
pp. 603
Author(s):  
Mate Baric ◽  
David Brčić ◽  
Mate Kosor ◽  
Roko Jelic

Based on traditional expressions and spherical trigonometry, at present, great circle navigation is undertaken using various navigational software packages. Recent research has mainly focused on vector algebra. These problems are calculated numerically and are thus suited to computer-aided great circle navigation. However, essential knowledge requires the navigator to be able to calculate navigation parameters without the use of aids. This requirement is met using spherical trigonometry functions and the Napier wheel. In addition, to facilitate calculation, certain axioms have been developed to determine a vessel’s true course. These axioms can lead to misleading results due to the limitations of the trigonometric functions, mathematical errors, and the type of great circle navigation. The aim of this paper is to determine a reliable trigonometric function for calculating a vessel’s course in regular and composite great circle navigation, which can be used with the proposed axioms. This was achieved using analysis of the trigonometric functions, and assessment of their impact on the vessel’s calculated course and established axioms.


2021 ◽  
Vol 11 (8) ◽  
pp. 3548
Author(s):  
Daniel Huczala ◽  
Tomáš Kot ◽  
Martin Pfurner ◽  
Dominik Heczko ◽  
Petr Oščádal ◽  
...  

Researchers often deal with the synthesis of the kinematic structure of a robotic manipulator to determine the optimal manipulator for a given task. This approach can lower the cost of the manipulator and allow it to achieve poses that might be unreachable by universal manipulators in an existing constrained environment. Numerical methods are broadly used to find the optimum design but they often require an estimated initial kinematic structure as input, especially if local-optimum-search algorithms are used. This paper presents four different algorithms for such an estimation using the standard Denavit–Hartenberg convention. Two of the algorithms are able to reach a given position and the other two can reach both position and orientation using Bézier splines approximation and vector algebra. The results are demonstrated with three chosen example poses and are evaluated by measuring manipulability and the total link length of the final kinematic structures.


2021 ◽  
Author(s):  
Dmitriy Trokoz ◽  
Aleksey Martyshkin ◽  
Dmitriy Pashchenko ◽  
Vitaliy Kalashnikov ◽  
Michael Sinev

Sign in / Sign up

Export Citation Format

Share Document