Heat transfer in subsonic high-temperature gas flow through three-dimensional curved channels

1989 ◽  
Vol 24 (3) ◽  
pp. 403-409
Author(s):  
S. N. Alaverdov ◽  
A. B. Vatazhin ◽  
V. A. Sepp
2021 ◽  
Vol 2097 (1) ◽  
pp. 012011
Author(s):  
Kang Qian ◽  
Taolue Liu ◽  
Fei He ◽  
Meng Wang ◽  
Longsheng Tang ◽  
...  

Abstract This paper proposed a numerical strategy which could achieve the coupled modeling and solving of transpiration cooling with external high-temperature gas flow and especially take the radiation effect into account. Based on the numerical strategy, the heat and mass transfer characteristics of the transpiration cooling in a high-temperature gas channel were studied, and the radiation effect and corresponding influence factors were analyzed. The results indicated that the radiative heat flux takes an important role in the heat transfer between the transpiration cooling and external high-temperature gas flow which may reach 40% under the operating condition considered in this work, and the radiation absorption from the coolant is more obvious near the downstream wall. As the wall emissivity increases, the radiation heat transfer in the downstream area of the porous wall is enhanced significantly and thereby the wall temperature there increases, as the result, the uniformity of the temperature distribution on the whole porous wall is improved to some extent.


1997 ◽  
Vol 28 (7-8) ◽  
pp. 438-445
Author(s):  
A. A. Vasil'yev ◽  
O. I. Didenko ◽  
V. F. Vishnyak ◽  
V. N. Panchenko

Author(s):  
Fariborz Forghan ◽  
Omid Askari ◽  
Uichiro Narusawa ◽  
Hameed Metghalchi

The main goal of gas turbine design is the effective use of energy. Usually, the efficient high temperature first and second stage turbine blade surface is cooled by jet of coolant flow from extended exit holes (EEH). Against the prevailing hot gas flow, the flow through EEH must be designed to form a film of cool air over the blade. Computational analyses are performed to examine the cooling effectiveness of flow from EEH over the suction side of a blade by solving conservation equations (mass, momentum and energy) and the ideal gas equation of state for the three-dimensional, turbulent, compressible flow. A diverging flow through EEH is typically choked at its throat, resulting in a supersonic flow, a shock and then a subsonic flow downstream. The location of the shock relative to the high-temperature gas flow over the blade determines the temperature distribution along the blade surface; which is analyzed in detail when the coolant flow rate is varied.


1978 ◽  
Vol 35 (6) ◽  
pp. 1466-1470
Author(s):  
N. I. Khvostov ◽  
V. E. Chekalin ◽  
A. D. Sukhobokov ◽  
K. N. Skirda

2011 ◽  
Vol 354-355 ◽  
pp. 361-364
Author(s):  
Zhan Xu Tie ◽  
Hai Xia Li ◽  
Xiao Dian Guo

The numerical model was established to simulate the gas flow and heat transfer in cement grate cooler. It is useful to increase the gas temperature when the extracting exit position is close to the cement kiln end. The appropriate position of the extracting high temperature gas is about 5 m far away from the cement clinker inlet.


Author(s):  
Dmitry V. Nesterovich ◽  
Oleg G. Penyazkov ◽  
Yu. A. Stankevich ◽  
M. S. Tretyak ◽  
Vladimir V. Chuprasov ◽  
...  

Author(s):  
Michel Arnal ◽  
Christian Precht ◽  
Thomas Sprunk ◽  
Tobias Danninger ◽  
John Stokes

The present paper outlines a practical methodology for improved virtual prototyping, using as an example, the recently re-engineered, internally-cooled 1st stage blade of a 40 MW industrial gas turbine. Using the full 3-D CAD model of the blade, a CFD simulation that includes the hot gas flow around the blade, conjugate heat transfer from the fluid to the solid at the blade surface, heat conduction through the solid, and the coolant flow in the plenum is performed. The pressure losses through and heat transfer to the cooling channels inside the airfoil are captured with a 1-D code and the 1-D results are linked to the three-dimensional CFD analysis. The resultant three-dimensional temperature distribution through the blade provides the required thermal loading for the subsequent structural finite element analysis. The results of this analysis include the thermo-mechanical stress distribution, which is the basis for blade life assessment.


Sign in / Sign up

Export Citation Format

Share Document