Effects of ?-endorphin on the development of denervation changes in rat muscle fiber membrane

1988 ◽  
Vol 19 (6) ◽  
pp. 550-555 ◽  
Author(s):  
A. V. Chikin ◽  
A. Kh. Urazaev ◽  
E. M. Volkov ◽  
G. I. Poletaev ◽  
Kh. S. Khamitov



2020 ◽  
Vol 71 (9) ◽  
pp. 325-336
Author(s):  
Teodor Dan Vacarus ◽  
Cristina Popescu ◽  
Adrian Moise ◽  
Gabriela Bucur

The aim of this paper is to present the implementation of a method for data acquisition, processing and interpretation of the electrical activity associated with the muscle fiber membrane, generated as a result of the ionic pumps� action. By using a biofeedback shield (EKG/EMG shield) for differential amplification and analog signal filtering, an Arduino development board for analog to digital conversion and an external processing unit, a series of experiments were carried out. These referred to medical diagnosis and research, human-machine interfaces (control of a robotic joint which could be used for prosthetic limbs or industrial robots, as well as control of the computer � for video games, virtual reality, interaction with other devices), and monitoring and increasing sports performance. Due to its noninvasive characteristics, this technique, known as surface electromyography, proves to play a significant role in areas such as medical research, rehabilitation, ergonomics, sports etc.



Author(s):  
N. Radicheva ◽  
K. Mileva ◽  
N. Stoyanova ◽  
B. Georgieva


1984 ◽  
Vol 7 (2) ◽  
pp. 110-120 ◽  
Author(s):  
Reinhardt Rüdel ◽  
Frank Lehmann-Horn ◽  
Kenneth Ricker ◽  
Gerald Küther


1960 ◽  
Vol 198 (5) ◽  
pp. 934-938 ◽  
Author(s):  
Toshio Narahashi ◽  
Takehiko Deguchi ◽  
Norimoto Urakawa ◽  
Yoshio Ohkubo

The mode of action of tetrodotoxin on the frog muscle fiber membrane has been analyzed with the aid of intracellular microelectrodes. Tetrodotoxin of 10–7 concentration made the applied cathodal current ineffective in producing action potential, whereas the resting potential and resting membrane resistance underwent little or no change. With 10–8 tetrodotoxin the muscle fibers responded with the small action potentials at high critical depolarizations. These results can be explained on the basis of the membrane being stabilized by inactivation of the sodium-carrying mechanism. Although delayed rectification was not observed in normal muscle fibers, it became apparent in the fibers rendered inexcitable by tetrodotoxin. This finding, together with other evidence in the existing literature, supports an applicability of the sodium theory to the frog muscle fibers.



1967 ◽  
Vol 50 (3) ◽  
pp. 583-601 ◽  
Author(s):  
Susumu Hagiwara ◽  
Kunitaro Takahashi

The effects of various divalent cations in the external solution upon the Ca spike of the barnacle muscle fiber membrane were studied using intracellular recording and polarizing techniques. Analysis of the maximum rate of rise of the spike potential indicates that different species of divalent cations bind the same membrane sites competitively with different dissociation constants. The overshoot of the spike potential is determined by the density of Ca (Sr) ions in the membrane sites while the threshold membrane potential for spike initiation depends on the total density of divalent cations. The order of binding among different divalent and trivalent cations is the following: La+++, UO2++ > Zn++, Co++, Fe++ > Mn++ > Ni++ > Ca++ > Mg++, Sr++



1968 ◽  
Vol 46 (1) ◽  
pp. 1-9 ◽  
Author(s):  
H. L. Atwood

The effects of bromide, nitrate, iodide, and thiocyanate ions on the neurally evoked fast and slow contractions of a crab muscle were investigated. Both types of contraction were depressed in bromide and nitrate. In iodide and thiocyanate, the slow contraction was often depressed but the fast contraction was potentiated. The foreign anions increased muscle fiber membrane resistance and the amplitudes of both fast and slow postsynaptic potentials. Records of tension development in single muscle fibers showed that more stimulating current was required to produce a given tension in nitrate than in the standard bathing fluid; this change was related to hyperpolarization of the muscle fiber membrane in nitrate. Potassium contractures also were inhibited by nitrate, because of the less effective depolarization of the cell membrane by potassium ion in the presence of nitrate. No marked shift in the membrane potential threshold for contraction occurred after treatment with the foreign anions.



1968 ◽  
Vol 51 (3) ◽  
pp. 399-425 ◽  
Author(s):  
Harold Gainer ◽  
Harry Grundfest

Single muscle fibers from lobster walking legs are effectively impermeable to Na, but are permeable to K. They shrink in hyperosmotic NaCl; they swell in low NaCl media which are hyposmotic or which are made isosmotic with the addition of KCl. In conformity, the membrane potential is relatively insensitive to changes in external Na, while it responds according to the Nernst relation for changes in external K. When the medium is made isosmotic or hyperosmotic with RbCl the volume and membrane potential changes are of essentially the same magnitudes as those in media enriched with KCl. The time courses for attaining equilibrium are slower, indicating that Rb is less permeant than K. Substitution of CsCl for NaCl (isosmotic condition) produces no change in volume of the muscle fiber. Addition of CsCl (hyperosmotic condition) causes a shrinkage which attains a steady state, as is the case in hyperosmotic NaCl. Osmotically, therefore, Cs appears to be no more permeant than is Na. However, the membrane depolarizes slowly in Cs-enriched media and eventually comes to behave as an ideal Cs electrode. Thus, the electrode properties of the lobster muscle fiber membrane may not depend upon the diffusional relations of the membrane and ions, and the osmotic permeability of the membrane for a given cation may not correspond with the electrophysiologically deduced permeability. Comparative data on the effects of NH4 and Li are also included and indicate several other degrees of complexity in the cell membrane.



2011 ◽  
Vol 111 (3) ◽  
pp. 630-641 ◽  
Author(s):  
Kevin C. McGill ◽  
Zoia C. Lateva

The conduction velocity (CV) of a muscle fiber is affected by the fiber's discharge history going back ∼1 s. We investigated this dependence by measuring CV fluctuations during voluntary isometric contractions of the human brachioradialis muscle. We recorded electromyogram (EMG) signals simultaneously from multiple intramuscular electrodes, identified potentials belonging to the same motor unit using EMG decomposition, and estimated the CV of each discharge from the interpotential interval. In 12 of 14 subjects, CV increased by ∼10% during the first second after recruitment and then fluctuated by about ±2% in a way that mirrored the fluctuations in the instantaneous firing rate. The CV profile could be precisely described in terms of the discharge history by a simple mathematical model. In the other two subjects, and one subject retested after cooling the arm, the CV fluctuations were inversely correlated with instantaneous firing rate. In all subjects, CV was additionally affected by very short interdischarge intervals (<25 ms): it was increased in doublets at recruitment, but decreased in doublets during continuous firing and after short interdischarge intervals in doubly innervated fibers. CV also exhibited a slow trend of about −0.05%/s that did not depend on the immediate discharge history. We suggest that measurements of CV fluctuations during voluntary contractions, or during stimulation protocols that involve longer and more complex stimulation patterns than are currently being used, may provide a sensitive approach for estimating the dynamic characteristics of ion channels in the human muscle-fiber membrane.



Sign in / Sign up

Export Citation Format

Share Document