Effect of disturbance of motor function on properties of the skeletal muscle fiber membrane

1983 ◽  
Vol 96 (5) ◽  
pp. 1520-1523
Author(s):  
E. M. Volkov ◽  
G. A. Nasledov ◽  
G. I. Poletaev

1987 ◽  
Vol 104 (5) ◽  
pp. 1491-1493
Author(s):  
A. V. Chikin ◽  
A. Kh. Urazaev ◽  
E. M. Volkov ◽  
G. I. Poletaev ◽  
Kh. S. Khamitov


1992 ◽  
Vol 119 (5) ◽  
pp. 1183-1191 ◽  
Author(s):  
V Straub ◽  
R E Bittner ◽  
J J Léger ◽  
T Voit

Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene locus, is expressed on the muscle fiber surface. One key to further understanding of the cellular function of dystrophin would be extended knowledge about its subcellular organization. We have shown that dystrophin molecules are not uniformly distributed over the humen, rat, and mouse skeletal muscle fiber surface using three independent methods. Incubation of single-teased muscle fibers with antibodies to dystrophin revealed a network of denser transversal rings (costameres) and finer longitudinal interconnections. Double staining of longitudinal semithin cryosections for dystrophin and alpha-actinin showed spatial juxtaposition of the costameres to the Z bands. Where peripheral myonuclei precluded direct contact of dystrophin to the Z bands the organization of dystrophin was altered into lacunae harboring the myonucleus. These lacunae were surrounded by a dystrophin ring and covered by a more uniform dystrophin veil. Mechanical skinning of single-teased fibers revealed tighter mechanical connection of dystrophin to the plasma membrane than to the underlying internal domain of the muscle fiber. The entire dystrophin network remained preserved in its structure on isolated muscle sarcolemma and identical in appearance to the pattern observed on teased fibers. Therefore, connection of defined areas of plasma membrane or its constituents such as ion channels to single sarcomeres might be a potential function exerted by dystrophin alone or in conjunction with other submembrane cytoskeletal proteins.



Author(s):  
Joachim R. Sommer ◽  
Teresa High ◽  
Betty Scherer ◽  
Isaiah Taylor ◽  
Rashid Nassar

We have developed a model that allows the quick-freezing at known time intervals following electrical field stimulation of a single, intact frog skeletal muscle fiber isolated by sharp dissection. The preparation is used for studying high resolution morphology by freeze-substitution and freeze-fracture and for electron probe x-ray microanlysis of sudden calcium displacement from intracellular stores in freeze-dried cryosections, all in the same fiber. We now show the feasibility and instrumentation of new methodology for stimulating a single, intact skeletal muscle fiber at a point resulting in the propagation of an action potential, followed by quick-freezing with sub-millisecond temporal resolution after electrical stimulation, followed by multiple sampling of the frozen muscle fiber for freeze-substitution, freeze-fracture (not shown) and cryosectionmg. This model, at once serving as its own control and obviating consideration of variances between different fibers, frogs etc., is useful to investigate structural and topochemical alterations occurring in the wake of an action potential.





2019 ◽  
Vol 10 ◽  
Author(s):  
Cody T. Haun ◽  
Christopher G. Vann ◽  
C. Brooks Mobley ◽  
Shelby C. Osburn ◽  
Petey W. Mumford ◽  
...  




2007 ◽  
Vol 1 (2) ◽  
pp. 183-190 ◽  
Author(s):  
S. A. Krolenko ◽  
S. Ya. Adamyan ◽  
T. N. Belyaeva ◽  
T. P. Mozhenok ◽  
A. V. Salova


Sign in / Sign up

Export Citation Format

Share Document