Mean-square asymptotic stability of solutions of systems of stochastic differential equations with random operators

1995 ◽  
Vol 47 (7) ◽  
pp. 1135-1147
Author(s):  
V. K. Yasinskii ◽  
L. I. Yasinskaya ◽  
I. V. Yurchenko
2003 ◽  
Vol 6 ◽  
pp. 297-313 ◽  
Author(s):  
Desmond J. Higham ◽  
Xuerong Mao ◽  
Andrew M. Stuart

AbstractPositive results are proved here about the ability of numerical simulations to reproduce the exponential mean-square stability of stochastic differential equations (SDEs). The first set of results applies under finite-time convergence conditions on the numerical method. Under these conditions, the exponential mean-square stability of the SDE and that of the method (for sufficiently small step sizes) are shown to be equivalent, and the corresponding second-moment Lyapunov exponent bounds can be taken to be arbitrarily close. The required finite-time convergence conditions hold for the class of stochastic theta methods on globally Lipschitz problems. It is then shown that exponential mean-square stability for non-globally Lipschitz SDEs is not inherited, in general, by numerical methods. However, for a class of SDEs that satisfy a one-sided Lipschitz condition, positive results are obtained for two implicit methods. These results highlight the fact that for long-time simulation on nonlinear SDEs, the choice of numerical method can be crucial.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Elhoussain Arhrrabi ◽  
M’hamed Elomari ◽  
Said Melliani ◽  
Lalla Saadia Chadli

The existence, uniqueness, and stability of solutions to fuzzy fractional stochastic differential equations (FFSDEs) driven by a fractional Brownian motion (fBm) with the Lipschitzian condition are investigated. Finally, we investigate the exponential stability of solutions.


1967 ◽  
Vol 10 (5) ◽  
pp. 681-688 ◽  
Author(s):  
B.S. Lalli

The purpose of this paper is to obtain a set of sufficient conditions for “global asymptotic stability” of the trivial solution x = 0 of the differential equation1.1using a Lyapunov function which is substantially different from similar functions used in [2], [3] and [4], for similar differential equations. The functions f1, f2 and f3 are real - valued and are smooth enough to ensure the existence of the solutions of (1.1) on [0, ∞). The dot indicates differentiation with respect to t. We are taking a and b to be some positive parameters.


Sign in / Sign up

Export Citation Format

Share Document