On Stability of Solutions of Certain Differential Equations of the Third Order

1967 ◽  
Vol 10 (5) ◽  
pp. 681-688 ◽  
Author(s):  
B.S. Lalli

The purpose of this paper is to obtain a set of sufficient conditions for “global asymptotic stability” of the trivial solution x = 0 of the differential equation1.1using a Lyapunov function which is substantially different from similar functions used in [2], [3] and [4], for similar differential equations. The functions f1, f2 and f3 are real - valued and are smooth enough to ensure the existence of the solutions of (1.1) on [0, ∞). The dot indicates differentiation with respect to t. We are taking a and b to be some positive parameters.

2008 ◽  
Vol 58 (2) ◽  
Author(s):  
B. Baculíková ◽  
E. Elabbasy ◽  
S. Saker ◽  
J. Džurina

AbstractIn this paper, we are concerned with the oscillation properties of the third order differential equation $$ \left( {b(t) \left( {[a(t)x'(t)'} \right)^\gamma } \right)^\prime + q(t)x^\gamma (t) = 0, \gamma > 0 $$. Some new sufficient conditions which insure that every solution oscillates or converges to zero are established. The obtained results extend the results known in the literature for γ = 1. Some examples are considered to illustrate our main results.


2005 ◽  
Vol 2005 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Cemil Tunç

We establish sufficient conditions under which all solutions of the third-order nonlinear differential equation x ⃛+ψ(x,x˙,x¨)x¨+f(x,x˙)=p(t,x,x˙,x¨) are bounded and converge to zero as t→∞.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
B. Baculíková ◽  
J. Džurina

The objective of this paper is to offer sufficient conditions for certain asymptotic properties of the third-order functional differential equation , where studied equation is in a canonical form, that is, . Employing Trench theory of canonical operators, we deduce properties of the studied equations via new comparison theorems. The results obtained essentially improve and complement earlier ones.


1969 ◽  
Vol 12 (5) ◽  
pp. 603-613 ◽  
Author(s):  
Lynn Erbe

An nth order homogeneous linear differential equation is said to be disconjugate on the interval I of the real line in case no non-trivial solution of the equation has more than n - 1 zeros (counting multiplicity) on I. It is the purpose of this paper to establish several necessary and sufficient conditions for disconjugacy of the third order linear differential equation(1.1)where pi(t) is continuous on the compact interval [a, b], i = 0, 1, 2.


1990 ◽  
Vol 33 (4) ◽  
pp. 442-451 ◽  
Author(s):  
G. Ladas ◽  
C. Qian

AbstractWe obtain sufficient conditions for the oscillation of all solutions of the linear delay differential equation with positive and negative coefficientswhereExtensions to neutral differential equations and some applications to the global asymptotic stability of the trivial solution are also given.


1920 ◽  
Vol 39 ◽  
pp. 21-24 ◽  
Author(s):  
Pierre Humbert

The polynomials which satisfy linear differential equations of the second order and of the hypergeometric type have been the object of extensive work, and very few properties of them remain now hidden; the student who seeks in that direction a subject for research is compelled to look, not after these functions themselves but after generalisations of them. Among these may be set in first place the polynomials connected with a differential equation of the third order and of the extended hypergeometric type, of which a general theory has been given by Goursat. The number of such polynomials of which properties have been studied in particular is rather small; in fact, Appell's polynomialsand Pincherle's polynomials, arising from the expansionsare, so far as I know, the only well-known ones. To show what can be done in these ways, I shall briefly give the definition and principal properties of some polynomials analogous to Pincherle's and of some allied functions.


Author(s):  
Boris S. Kalitine

This article is devoted to the investigation of stability of equilibrium of ordinary differential equations using the method of semi-definite Lyapunov’s functions. Types of scalar nonlinear sixth-order differential equations for which regular constant auxiliary functions are used are emphasized. Sufficient conditions of global asymptotic stability and instability of the zero solution have been obtained and it has been established that the Aizerman problem has a positive solution concerning the roots of the corresponding linear differential equation. Studies highlight the advantages of using semi-definite functions compared to definitely positive Lyapunov’s functions.


Author(s):  
Z. A. Japarova

Specific sufficient conditions for the asymptotic stability of a linear homogeneous fourthorder integro-differential equation of the Volterra type are established in the case when all nonzero solutions of the corresponding fourth-order differential equation do not have the property of asymptotic stability of the solutions. In this paper, we obtain estimates on the semiaxis of the solution and the derivative up to the third order.


2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


Author(s):  
F. W. J. Olver

In a recent paper (1) I described a method for the numerical evaluation of zeros of the Bessel functions Jn(z) and Yn(z), which was independent of computed values of these functions. The essence of the method was to regard the zeros ρ of the cylinder functionas a function of t and to solve numerically the third-order non-linear differential equation satisfied by ρ(t). It has since been successfully used to compute ten-decimal values of jn, s, yn, s, the sth positive zeros* of Jn(z), Yn(z) respectively, in the ranges n = 10 (1) 20, s = 1(1) 20. During the course of this work it was realized that the least satisfactory feature of the new method was the time taken for the evaluation of the first three or four zeros in comparison with that required for the higher zeros; the direct numerical technique for integrating the differential equation satisfied by ρ(t) becomes unwieldy for the small zeros and a different technique (described in the same paper) must be employed. It was also apparent that no mere refinement of the existing methods would remove this defect and that a new approach was required if it was to be eliminated. The outcome has been the development of the method to which the first part (§§ 2–6) of this paper is devoted.


Sign in / Sign up

Export Citation Format

Share Document