Lie algebras of differential operators, their central extensions, and W-algebras

1991 ◽  
Vol 25 (1) ◽  
pp. 25-39 ◽  
Author(s):  
A. O. Radul
2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Jarnishs Beltran ◽  
Enrique G. Reyes

We review some aspects of the theory of Lie algebras of (twisted and untwisted) formal pseudodifferential operators in one and several variables in a general algebraic context. We focus mainly on the construction and classification of nontrivial central extensions. As applications, we construct hierarchies of centrally extended Lie algebras of formal differential operators in one and several variables, Manin triples and hierarchies of nonlinear equations in Lax and zero curvature form.


1997 ◽  
Vol 40 (6) ◽  
pp. 525-530 ◽  
Author(s):  
I. V. Shirokov

2016 ◽  
Vol 18 (6) ◽  
pp. 1273-1320 ◽  
Author(s):  
Christoph Wockel ◽  
Chenchang Zhu

2000 ◽  
Vol 11 (04) ◽  
pp. 523-551 ◽  
Author(s):  
VINAY KATHOTIA

We relate a universal formula for the deformation quantization of Poisson structures (⋆-products) on ℝd proposed by Maxim Kontsevich to the Campbell–Baker–Hausdorff (CBH) formula. We show that Kontsevich's formula can be viewed as exp (P) where P is a bi-differential operator that is a deformation of the given Poisson structure. For linear Poisson structures (duals of Lie algebras) his product takes the form exp (C+L) where exp (C) is the ⋆-product given by the universal enveloping algebra via symmetrization, essentially the CBH formula. This is established by showing that the two products are identical on duals of nilpotent Lie algebras where the operator L vanishes. This completely determines part of Kontsevich's formula and leads to a new scheme for computing the CBH formula. The main tool is a graphical analysis for bi-differential operators and the computation of certain iterated integrals that yield the Bernoulli numbers.


1998 ◽  
Vol 31 (5) ◽  
pp. 1373-1394 ◽  
Author(s):  
J A de Azcárraga ◽  
F J Herranz ◽  
J C Pérez Bueno ◽  
M Santander

1997 ◽  
Vol 12 (22) ◽  
pp. 1589-1595 ◽  
Author(s):  
E. H. El Kinani

The class of pseudo-differential operators Lie algebra [Formula: see text] on the quantum plane [Formula: see text] is introduced. The embedding of certain infinite-dimensional Lie algebras which occur in the physics literature in [Formula: see text] is discussed as well as the correspondence between [Formula: see text] and [Formula: see text] as k→+∞ is examined.


2000 ◽  
Vol 316 (3) ◽  
pp. 499-527 ◽  
Author(s):  
Bruce Allison ◽  
Georgia Benkart ◽  
Yun Gao

Sign in / Sign up

Export Citation Format

Share Document