Constructing lie algebras of first-order differential operators

1997 ◽  
Vol 40 (6) ◽  
pp. 525-530 ◽  
Author(s):  
I. V. Shirokov
2021 ◽  
Vol 81 (10) ◽  
Author(s):  
A. Morozov ◽  
M. Reva ◽  
N. Tselousov ◽  
Y. Zenkevich

AbstractWe describe a systematic method to construct arbitrary highest-weight modules, including arbitrary finite-dimensional representations, for any finite dimensional simple Lie algebra $${\mathfrak {g}}$$ g . The Lie algebra generators are represented as first order differential operators in $$\frac{1}{2} \left( \dim {\mathfrak {g}} - \text {rank} \, {\mathfrak {g}}\right) $$ 1 2 dim g - rank g variables. All rising generators $$\mathbf{e}$$ e are universal in the sense that they do not depend on representation, the weights enter (in a very simple way) only in the expressions for the lowering operators $$\mathbf{f}$$ f . We present explicit formulas of this kind for the simple root generators of all classical Lie algebras.


2000 ◽  
Vol 11 (04) ◽  
pp. 523-551 ◽  
Author(s):  
VINAY KATHOTIA

We relate a universal formula for the deformation quantization of Poisson structures (⋆-products) on ℝd proposed by Maxim Kontsevich to the Campbell–Baker–Hausdorff (CBH) formula. We show that Kontsevich's formula can be viewed as exp (P) where P is a bi-differential operator that is a deformation of the given Poisson structure. For linear Poisson structures (duals of Lie algebras) his product takes the form exp (C+L) where exp (C) is the ⋆-product given by the universal enveloping algebra via symmetrization, essentially the CBH formula. This is established by showing that the two products are identical on duals of nilpotent Lie algebras where the operator L vanishes. This completely determines part of Kontsevich's formula and leads to a new scheme for computing the CBH formula. The main tool is a graphical analysis for bi-differential operators and the computation of certain iterated integrals that yield the Bernoulli numbers.


2014 ◽  
Vol 22 (1) ◽  
pp. 85-103 ◽  
Author(s):  
Jan Chvalina ◽  
Šárka Hošková-Mayerová

AbstractThe contribution aims to create hypergroups of linear first-order partial differential operators with proximities, one of which creates a tolerance semigroup on the power set of the mentioned differential operators. Constructions of investigated hypergroups are based on the so called “Ends-Lemma” applied on ordered groups of differnetial operators. Moreover, there is also obtained a regularly preordered transpositions hypergroup of considered partial differntial operators.


Sign in / Sign up

Export Citation Format

Share Document