Integrable Hamiltonian systems connected with graded Lie algebras

1982 ◽  
Vol 19 (5) ◽  
pp. 1507-1545 ◽  
Author(s):  
A. G. Reiman
2004 ◽  
Vol 16 (07) ◽  
pp. 823-849 ◽  
Author(s):  
T. SKRYPNYK

We construct a family of infinite-dimensional quasigraded Lie algebras, that could be viewed as deformation of the graded loop algebras and admit Kostant–Adler scheme. Using them we obtain new integrable hamiltonian systems admitting Lax-type representations with the spectral parameter.


2016 ◽  
Vol 43 (2) ◽  
pp. 145-168 ◽  
Author(s):  
Alexey Bolsinov

The Mishchenko-Fomenko conjecture says that for each real or complex finite-dimensional Lie algebra g there exists a complete set of commuting polynomials on its dual space g*. In terms of the theory of integrable Hamiltonian systems this means that the dual space g* endowed with the standard Lie-Poisson bracket admits polynomial integrable Hamiltonian systems. This conjecture was proved by S. T. Sadetov in 2003. Following his idea, we give an explicit geometric construction for commuting polynomials on g* and consider some examples. (This text is a revised version of my paper published in Russian: A. V. Bolsinov, Complete commutative families of polynomials in Poisson?Lie algebras: A proof of the Mischenko?Fomenko conjecture in book: Tensor and Vector Analysis, Vol. 26, Moscow State University, 2005, 87?109.)


Sign in / Sign up

Export Citation Format

Share Document