DEFORMATIONS OF LOOP ALGEBRAS AND CLASSICAL INTEGRABLE SYSTEMS: FINITE-DIMENSIONAL HAMILTONIAN SYSTEMS

2004 ◽  
Vol 16 (07) ◽  
pp. 823-849 ◽  
Author(s):  
T. SKRYPNYK

We construct a family of infinite-dimensional quasigraded Lie algebras, that could be viewed as deformation of the graded loop algebras and admit Kostant–Adler scheme. Using them we obtain new integrable hamiltonian systems admitting Lax-type representations with the spectral parameter.


2016 ◽  
Vol 43 (2) ◽  
pp. 145-168 ◽  
Author(s):  
Alexey Bolsinov

The Mishchenko-Fomenko conjecture says that for each real or complex finite-dimensional Lie algebra g there exists a complete set of commuting polynomials on its dual space g*. In terms of the theory of integrable Hamiltonian systems this means that the dual space g* endowed with the standard Lie-Poisson bracket admits polynomial integrable Hamiltonian systems. This conjecture was proved by S. T. Sadetov in 2003. Following his idea, we give an explicit geometric construction for commuting polynomials on g* and consider some examples. (This text is a revised version of my paper published in Russian: A. V. Bolsinov, Complete commutative families of polynomials in Poisson?Lie algebras: A proof of the Mischenko?Fomenko conjecture in book: Tensor and Vector Analysis, Vol. 26, Moscow State University, 2005, 87?109.)



2010 ◽  
Vol 20 (06) ◽  
pp. 731-768
Author(s):  
MARINA AVITABILE ◽  
GIUSEPPE JURMAN ◽  
SANDRO MATTAREI

Thin Lie algebras are graded Lie algebras [Formula: see text] with dim Li ≤ 2 for all i, and satisfying a more stringent but natural narrowness condition modeled on an analogous condition for pro-p-groups. The two-dimensional homogeneous components of L, which include L1, are named diamonds. Infinite-dimensional thin Lie algebras with various diamond patterns have been produced, over fields of positive characteristic, as loop algebras of suitable finite-dimensional simple Lie algebras, of classical or of Cartan type depending on the location of the second diamond. The goal of this paper is a description of the initial structure of a thin Lie algebra, up to the second diamond. Specifically, if Lk is the second diamond of L, then the quotient L/Lk is a graded Lie algebras of maximal class. In odd characteristic p, the quotient L/Lk is known to be metabelian, and hence uniquely determined up to isomorphism by its dimension k, which ranges in an explicitly known set of possible values: 3, 5, a power of p, or one less than twice a power of p. However, the quotient L/Lk need not be metabelian in characteristic two. We describe here all the possibilities for L/Lk up to isomorphism. In particular, we prove that k + 1 equals a power of two.



2008 ◽  
Vol 22 (13) ◽  
pp. 1307-1315
Author(s):  
RUGUANG ZHOU ◽  
ZHENYUN QIN

A technique for nonlinearization of the Lax pair for the scalar soliton equations in (1+1) dimensions is applied to the symmetric matrix KdV equation. As a result, a pair of finite-dimensional integrable Hamiltonian systems, which are of higher rank generalization of the classic Gaudin models, are obtained. The integrability of the systems are shown by the explicit Lax representations and r-matrix method.



1974 ◽  
Vol 11 (1) ◽  
pp. 145-156 ◽  
Author(s):  
Ian N. Stewart

Infinite-dimensional soluble Lie algebras can possess maximal subalgebras which are finite-dimensional. We give a fairly complete description of such algebras: over a field of prime characteristic they do not exist; over a field of zero characteristic then, modulo the core of the aforesaid maximal subalgebra, they are split extensions of an abelian minimal ideal by the maximal subalgebra. If the field is algebraically closed, or if the maximal subalgebra is supersoluble, then all finite-dimensional maximal subalgebras are conjugate under the group of automorphisms generated by exponentials of inner derivations by elements of the Fitting radical. An example is given to indicate the differences encountered in the insoluble case, and the nonexistence of group-theoretic analogues is briefly discussed.





Sign in / Sign up

Export Citation Format

Share Document