Monoclonal antibodies against neoantigens of the terminal C5b-9 complex of human complement

1985 ◽  
Vol 5 (8) ◽  
pp. 649-658 ◽  
Author(s):  
Ferdinand Hugo ◽  
Dieter Jenne ◽  
Sucharit Bhakdi

Assembly of the terminal C5b-C9 complement components into the cytolytic C5b-9 complex is accompanied by exposure of characteristic neoantigens on the macromolecule. We report the production and characterization of mouse monoclonal antibodies to C9-dependent neoantigens of human C5b-9. Binding-inhibition assays with EDTA-human plasma and micro-ELISA assays with purified C9 showed that the antibodies did not react with native complement components and thus confirmed the specificity of the antibodies for the neoantigens. The monoclonal antibodies did, however, cross-react with cytolyticaIly inactive, fluid-phase C5b-9 complexes, Thus, expression of the neoantigenic determinants was not dependent on the formation of high molecular weight C9 polymers with the complex, since these are absent in fluid-phase C5b-9. Radioiodinated antibodies could be utilized in immunoradiometric assays for the detection and quantitation of C5b-9 on cell membranes. Cross-reactivities of the antibodies with C9-dependent neoantigens of several other animal species were examined and antibody clones cross-reacting with rabbit (clones 3BI, 3Dg, and 2F3), sheep (clones 3Dg and 2F3) and guinea-pig (clone 3D8) neoantigens were identified. Three of four tested clones (3D8, 2F3, IA12) precipitated C5b-9 complexes in double-diffusion assays, probably due to their interaction with multiple and repeating C9-epitopes on the terminal complexes. The monoclonal antibodies will be of value for definitive identification and quantitation of C5b-9 on cell membranes and in tissues, and for establishing immunoassays for detection and quantitation of terminal fluid-phase C5b-9 complexes in plasma.

1982 ◽  
Vol 19 (11) ◽  
pp. 1425-1431 ◽  
Author(s):  
Richard G. Discipio ◽  
Jean Gagnon

2010 ◽  
Vol 78 (11) ◽  
pp. 4467-4476 ◽  
Author(s):  
Roswitha Dieterich ◽  
Claudia Hammerschmidt ◽  
Dania Richter ◽  
Christine Skerka ◽  
Reinhard Wallich ◽  
...  

ABSTRACT Spirochetes belonging to the Borrelia burgdorferi sensu lato complex differ in resistance to complement-mediated killing by human serum. Here, we characterize complement sensitivity of a panel of B. lusitaniae isolates derived from ticks collected in Germany and Portugal as well as one patient-derived isolate, PoHL. All isolates are highly susceptible to complement-mediated lysis in human serum and activate complement predominantly by the alternative pathway, leading to an increased deposition of complement components C3, C6, and the terminal complement complex. Interestingly, serum-sensitive B. lusitaniae isolates were able to bind immune regulator factor H (CFH), and some strains also bound CFH-related protein 1 (CFHR1) and CFHR2. Moreover, CFH bound to the surface of B. lusitaniae was inefficient in mediating C3b conversion. Furthermore, the identification and characterization of a potential CFH-binding protein, OspE, revealed that this molecule possesses a significantly reduced binding capacity for CFH compared to that of CFH-binding OspE paralogs expressed by various serum-resistant Borrelia species. This finding suggests that a reduced binding capability of CFH is associated with an increased serum sensitivity of B. lusitaniae to human complement.


1990 ◽  
Vol 268 (1) ◽  
pp. 55-61 ◽  
Author(s):  
B Nilsson ◽  
K Nilsson Ekdahl ◽  
D Avila ◽  
U R Nilsson ◽  
J D Lambris

The different fragments of the third complement component, C3, generated upon complement activation/inactivation have the ability to bind to several other complement components and receptors as well as to proteins of foreign origin. These multiple reactivities of C3 fragments are associated with a series of conformational changes occurring in the C3 molecule during its degradation. The conformations acquired by the different C3 fragments are also associated with the exposure of neoantigenic epitopes that are specific for (a) particular fragment(s). In order to study these epitopes and thus the conformational changes occurring in C3, monoclonal antibodies (mAbs) recognizing such epitopes were produced in Balb/c mice after immunization with denatured human C3. Two of the three antibodies (7D84.1 and 7D264.6) presented in this study recognized predominantly surface-bound iC3b, and one mAb (7D323.1) recognized both surface-bound and fluid-phase iC3b. Although none of the mAbs recognized any other fluid-phase C3 fragment, all three antibodies detected micro-titre-plate-fixed C3b and iC3b, but not C3c or C3d. In addition to the reaction with human C3, mAb 7D323.1 also bound to micro-titre-plate-fixed rabbit C3. The epitopes recognized by the three mAbs were further localized by using synthetic peptides that were designed on the basis of the differential binding of the mAbs to the C3 fragments. All three antibodies reacted with C3-(924-965)-peptide, which represents the region of C3 between the kallikrein-cleavage site (923-924) and the elastase-cleavage site (965-966). On the basis of the binding of the mAbs to five different overlapping peptides spanning the region between residues 924 and 965 of the human C3 sequence, and the sequence similarity between human C3 and rabbit C3 within this area, the epitopes recognized by these antibodies are mapped. The contribution of the individual amino acid residues in the formation of the epitopes is discussed.


1998 ◽  
Vol 79 (01) ◽  
pp. 104-109 ◽  
Author(s):  
Osamu Takamiya

SummaryMurine monoclonal antibodies (designated hVII-B101/B1, hVIIDC2/D4 and hVII-DC6/3D8) directed against human factor VII (FVII) were prepared and characterized, with more extensive characterization of hVII-B101/B1 that did not bind reduced FVIIa. The immunoglobulin of the three monoclonal antibodies consisted of IgG1. These antibodies did not inhibit procoagulant activities of other vitamin K-dependent coagulation factors except FVII and did not cross-react with proteins in the immunoblotting test. hVII-DC2/D4 recognized the light chain after reduction of FVIIa with 2-mercaptoethanol, and hVIIDC6/3D8 the heavy chain. hVII-B101/B1 bound FVII without Ca2+, and possessed stronger affinity for FVII in the presence of Ca2+. The Kd for hVII-B101/B1 to FVII was 1.75 x 10–10 M in the presence of 5 mM CaCl2. The antibody inhibited the binding of FVII to tissue factor in the presence of Ca2+. hVII-B101/B1 also inhibited the activation of FX by the complex of FVIIa and tissue factor in the presence of Ca2+. Furthermore, immunoblotting revealed that hVII-B101/B1 reacted with non-reduced γ-carboxyglutaminic acid (Gla)-domainless-FVII and/or FVIIa. hVII-B101/B1 showed a similar pattern to that of non-reduced proteolytic fragments of FVII by trypsin with hVII-DC2/D4 on immunoblotting test. hVII-B101/B1 reacted differently with the FVII from the dysfunctional FVII variant, FVII Shinjo, which has a substitution of Gln for Arg at residue 79 in the first epidermal growth factor (1st EGF)-like domain (Takamiya O, et al. Haemosta 25, 89-97,1995) compared with normal FVII, when used as a solid phase-antibody for ELISA by the sandwich method. hVII-B101/B1 did not react with a series of short peptide sequences near position 79 in the first EGF-like domain on the solid-phase support for epitope scanning. These results suggested that the specific epitope of the antibody, hVII-B101/B1, was located in the three-dimensional structure near position 79 in the first EGF-like domain of human FVII.


Sign in / Sign up

Export Citation Format

Share Document