2. Topological degree, rotation, and fixed points of multivalued mappings in finite-dimensional spaces

1987 ◽  
Vol 39 (3) ◽  
pp. 2786-2790
2009 ◽  
Vol 2009 (1) ◽  
pp. 972395 ◽  
Author(s):  
S Dhompongsa ◽  
H Yingtaweesittikul

2016 ◽  
Vol 59 (01) ◽  
pp. 3-12 ◽  
Author(s):  
Monther Rashed Alfuraidan

Abstract We study the existence of fixed points for contraction multivalued mappings in modular metric spaces endowed with a graph. The notion of a modular metric on an arbitrary set and the corresponding modular spaces, generalizing classical modulars over linear spaces like Orlicz spaces, were recently introduced. This paper can be seen as a generalization of Nadler and Edelstein’s fixed point theorems to modular metric spaces endowed with a graph.


SIAM Review ◽  
1965 ◽  
Vol 7 (1) ◽  
pp. 141-143
Author(s):  
F. S. van Vleck

Author(s):  
Hisato Fujisaka ◽  
Chikara Sato

Abstract A numerical method is presented to compute the number of fixed points of Poincare maps in ordinary differential equations including time varying equations. The method’s fundamental is to construct a map whose topological degree equals to the number of fixed points of a Poincare map on a given domain of Poincare section. Consequently, the computation procedure is simply computing the topological degree of the map. The combined use of this method and Newton’s iteration gives the locations of all the fixed points in the domain.


2019 ◽  
Vol 22 (6) ◽  
pp. 1089-1099
Author(s):  
Motoko Kato

Abstract We give a criterion for group elements to have fixed points with respect to a semi-simple action on a complete CAT(0) space of finite topological dimension. As an application, we show that Thompson’s group T and various generalizations of Thompson’s group V have global fixed points when they act semi-simply on finite-dimensional complete CAT(0) spaces, while it is known that T and V act properly on infinite-dimensional CAT(0) cube complexes.


2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Maciej Starostka

AbstractFollowing S. Bauer and M. Furuta we investigate finite dimensional approximations of a monopole map in the case b 1 = 0. We define a certain topological degree which is exactly equal to the Seiberg-Witten invariant. Using homotopy invariance of the topological degree a simple proof of the wall crossing formula is derived.


Sign in / Sign up

Export Citation Format

Share Document