3. Topological degree and fixed points of multivalued mappings in infinite-dimensional spaces

1987 ◽  
Vol 39 (3) ◽  
pp. 2790-2797
2009 ◽  
Vol 2009 (1) ◽  
pp. 972395 ◽  
Author(s):  
S Dhompongsa ◽  
H Yingtaweesittikul

2019 ◽  
Vol 28 (2) ◽  
pp. 191-198
Author(s):  
T. M. M. SOW

It is well known that Krasnoselskii-Mann iteration of nonexpansive mappings find application in many areas of mathematics and know to be weakly convergent in the infinite dimensional setting. In this paper, we introduce and study an explicit iterative scheme by a modified Krasnoselskii-Mann algorithm for approximating fixed points of multivalued quasi-nonexpansive mappings in Banach spaces. Strong convergence of the sequence generated by this algorithm is established. There is no compactness assumption. The results obtained in this paper are significant improvement on important recent results.


2016 ◽  
Vol 59 (01) ◽  
pp. 3-12 ◽  
Author(s):  
Monther Rashed Alfuraidan

Abstract We study the existence of fixed points for contraction multivalued mappings in modular metric spaces endowed with a graph. The notion of a modular metric on an arbitrary set and the corresponding modular spaces, generalizing classical modulars over linear spaces like Orlicz spaces, were recently introduced. This paper can be seen as a generalization of Nadler and Edelstein’s fixed point theorems to modular metric spaces endowed with a graph.


SIAM Review ◽  
1965 ◽  
Vol 7 (1) ◽  
pp. 141-143
Author(s):  
F. S. van Vleck

Author(s):  
Hisato Fujisaka ◽  
Chikara Sato

Abstract A numerical method is presented to compute the number of fixed points of Poincare maps in ordinary differential equations including time varying equations. The method’s fundamental is to construct a map whose topological degree equals to the number of fixed points of a Poincare map on a given domain of Poincare section. Consequently, the computation procedure is simply computing the topological degree of the map. The combined use of this method and Newton’s iteration gives the locations of all the fixed points in the domain.


2019 ◽  
Vol 22 (6) ◽  
pp. 1089-1099
Author(s):  
Motoko Kato

Abstract We give a criterion for group elements to have fixed points with respect to a semi-simple action on a complete CAT(0) space of finite topological dimension. As an application, we show that Thompson’s group T and various generalizations of Thompson’s group V have global fixed points when they act semi-simply on finite-dimensional complete CAT(0) spaces, while it is known that T and V act properly on infinite-dimensional CAT(0) cube complexes.


2007 ◽  
Vol 17 (12) ◽  
pp. 4261-4272 ◽  
Author(s):  
ZBIGNIEW GALIAS ◽  
PIOTR ZGLICZYŃSKI

In this work, we introduce the Krawczyk operator for infinite dimensional maps. We prove two properties of this operator related to the existence of zeros of the map. We also show how the Krawczyk operator can be used to prove the existence of periodic orbits of infinite dimensional discrete dynamical systems and for finding all periodic orbits with a given period enclosed in a specified region. As an example, we consider the Kot–Schaffer growth-dispersal model, for which we find all fixed points and period-2 orbits enclosed in the region containing the attractor observed numerically.


Sign in / Sign up

Export Citation Format

Share Document