A Recursion Formula for the Coefficients of Entire Functions Satisfying an ODE with Polynomial Coefficients

2004 ◽  
Vol 11 (3) ◽  
pp. 409-414
Author(s):  
C. Belingeri

Abstract A recursion formula for the coefficients of entire functions which are solutions of linear differential equations with polynomial coefficients is derived. Some explicit examples are developed. The Newton sum rules for the powers of zeros of a class of entire functions are constructed in terms of Bell polynomials.

2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Zhigang Huang

This paper is devoted to studying the growth of solutions of second-order nonhomogeneous linear differential equation with meromorphic coefficients. We also discuss the relationship between small functions and differential polynomialsL(f)=d2f″+d1f′+d0fgenerated by solutions of the above equation, whered0(z),d1(z),andd2(z)are entire functions that are not all equal to zero.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Yūki Naito ◽  
Mervan Pašić

We study a new kind of asymptotic behaviour near for the nonautonomous system of two linear differential equations: , , where the matrix-valued function has a kind of singularity at . It is called rectifiable (resp., nonrectifiable) attractivity of the zero solution, which means that as and the length of the solution curve of is finite (resp., infinite) for every . It is characterized in terms of certain asymptotic behaviour of the eigenvalues of near . Consequently, the main results are applied to a system of two linear differential equations with polynomial coefficients which are singular at .


1870 ◽  
Vol 18 (114-122) ◽  
pp. 210-212

The principles laid down in my former paper will enable us to integrate a proposed differential equation, when the solution can be expressed in the form—P/Q, where P, Q, to are rational and entire functions of ( x ). Let (α 0 +α 1 x +α 2 x 2 + ... +α m x m ) d n y / dx n + (β 0 +β 1 +β 2 x 2 + ... +α m x m ) d n-1 y / dx n-1 + (γ 0 +γ 1 x +γ 2 x 2 + ... +γ m x m ) d n-2 y / dx n-2 +.... +(λ 0 +λ 1 +λ 2 x 2 + ... +λ m x m ) y =0 be the general linear differential equation of the nth order, where none of the indices of ( x ) in the coefficients of the succeeding terms are greater than those in the coefficients of the two first.


2017 ◽  
Vol 165 (1) ◽  
pp. 93-108 ◽  
Author(s):  
WALTER BERGWEILER ◽  
ALEXANDRE EREMENKO ◽  
AIMO HINKKANEN

AbstractWe study entire functions whose zeros and one-points lie on distinct finite systems of rays. General restrictions on these rays are obtained. Non-trivial examples of entire functions with zeros and one-points on different rays are constructed, using the Stokes phenomenon for second order linear differential equations.


Algorithms ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 286
Author(s):  
Kyle R. Bryenton ◽  
Andrew R. Cameron ◽  
Keegan L. A. Kirk ◽  
Nasser Saad ◽  
Patrick Strongman ◽  
...  

The analysis of many physical phenomena is reduced to the study of linear differential equations with polynomial coefficients. The present work establishes the necessary and sufficient conditions for the existence of polynomial solutions to linear differential equations with polynomial coefficients of degree n, n−1, and n−2 respectively. We show that for n≥3 the necessary condition is not enough to ensure the existence of the polynomial solutions. Applying Scheffé’s criteria to this differential equation we have extracted n generic equations that are analytically solvable by two-term recurrence formulas. We give the closed-form solutions of these generic equations in terms of the generalized hypergeometric functions. For arbitrary n, three elementary theorems and one algorithm were developed to construct the polynomial solutions explicitly along with the necessary and sufficient conditions. We demonstrate the validity of the algorithm by constructing the polynomial solutions for the case of n=4. We also demonstrate the simplicity and applicability of our constructive approach through applications to several important equations in theoretical physics such as Heun and Dirac equations.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Zinelaâbidine Latreuch ◽  
Benharrat Belaïdi

We study the growth and oscillation of gf=d1f1+d2f2, where d1 and d2 are entire functions of finite order not all vanishing identically and f1 and f2 are two linearly independent solutions of the linear differential equation f′′+A(z)f=0.


Sign in / Sign up

Export Citation Format

Share Document