Mathematical description of the stimuli to the lateral line system of fish, derived from a three-dimensional flow field analysis. III. The case of an oscillating sphere near the fish

1993 ◽  
Vol 69 (5-6) ◽  
pp. 525-538 ◽  
Author(s):  
El-S. Hassan
Author(s):  
L V S S Lohitasya Varun ◽  
Y. D. Dwivedi

The canard has been seen as an ominous aerodynamic object for ages this paper is to shed some more light on the effects of canard configuration on the aircraft’s wings. This flow-field analysis is thus being done using a turbulence model solution to take into the effects of a real-time environment where the vortices from the canard are captured more accurately. The analysis has been done meticulously and made to be as error-free as possible under the guidance of Dr. Yagya Dutta Dwivedi.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
L. Porreca ◽  
A. I. Kalfas ◽  
R. S. Abhari

This paper presents a comprehensive study of the effect of shroud design in axial turbine aerodynamics. Experimental measurements and numerical simulations have been conducted on three different test cases with identical blade geometry and tip clearances but different shroud designs. The first and second test cases are representative of a full shroud and a nonaxisymmetric partial shroud geometry while the third test case uses an optimized partial shroud. Partial shrouds are sometimes used in industrial application in order to benefit from the advantage of shrouded configuration, as well as reduce mechanical stress on the blades. However, the optimal compromise between mechanical considerations and aerodynamic performances is still an open issue due to the resulting highly three-dimensional unsteady flow field. Aerodynamic performance is measured in a low-speed axial turbine facility and shows that there are clear differences between the test cases. In addition, steady and time resolved measurements are performed together with computational analysis in order to improve the understanding of the effect of the shroud geometry on the flow field and to quantify the sources of the resultant additional losses. The flow field analysis shows that the effect of the shroud geometry is significant from 60% blade height span to the tip. Tip leakage vortex in the first rotor is originated in the partial shroud test cases while the full shroud case presents only a weak indigenous tip passage vortex. This results in a significant difference in the secondary flow development in the following second stator with associated losses that varies by about 1% in this row. The analysis shows that the modified partial shroud design has improved considerably the aerodynamic efficiency by about 0.6% by keeping almost unchanged the overall weight of this component, and thus blade root stresses. The work, therefore, presents a comprehensive flow field analysis and shows the impact of the shroud geometry in the aerodynamic performance.


2012 ◽  
Vol 184-185 ◽  
pp. 244-247
Author(s):  
Zhong Bin Liu ◽  
Feng Luo

Dynamic filtration with rotating disks is modeled by three-dimensional graphics software and its flow field is analyzed and numerical simulated by CFD software. The mechanical stability of dynamic filtration with rotating disks in the work process is analyzed by the model of rotating flow. The results show that the farthest end of rotating disks exit the largest flow velocity. There are two circular flows, which can remove the pollutants of rotating disks. The pressure of water is gradually increased as the main flow is near cylinder of the filtration. Simulation results are consistent to the practice, which provides important theoretical basis for improving and optimization of dynamic filtration with rotating disks.


Sign in / Sign up

Export Citation Format

Share Document