Influence of pulse stimulation of the visual cortex on the function of the superior colliculus of the awake rabbit

1992 ◽  
Vol 22 (5) ◽  
pp. 423-429
Author(s):  
N. A. Gadzhieva ◽  
F. B. Kulieva ◽  
L. �. Kul'gavin ◽  
�. I. Kuliev
2001 ◽  
Vol 85 (6) ◽  
pp. 2639-2642 ◽  
Author(s):  
Kaoru Yoshida ◽  
Yoshiki Iwamoto ◽  
Sohei Chimoto ◽  
Hiroshi Shimazu

We investigated the synaptic organization responsible for the inhibition of omnipause neurons (OPNs) following stimulation of the superior colliculus (SC) in alert cats. Stimulation electrodes were implanted bilaterally in the rostral and caudal SC where a short-pulse train induced small and large saccades, respectively. Effects of single-pulse stimulation on OPNs were examined with intracellular and extracellular recordings. In contrast to monosynaptic excitatory postsynaptic potentials, which were induced by rostral SC stimulation, inhibitory postsynaptic potentials were induced with disynaptic latencies (1.3–1.9 ms) from both the rostral and caudal SC in most OPNs. Analysis of a larger extracellular sample complemented intracellular observations. Monosynaptic activation of OPNs was elicited more frequently from rostral sites than from caudal sites, whereas spike suppression with disynaptic latencies was induced by caudal as well as rostral stimulation with similar frequencies. The results imply that disynaptic inhibition is produced by activation of SC cells that are distributed over wide regions related to saccades of different sizes. We suggest that signals from these neurons initiate a saccadic pause of OPNs through single inhibitory interneurons.


1999 ◽  
Vol 16 (3) ◽  
pp. 541-555 ◽  
Author(s):  
YI ZHANG ◽  
RICHARD D. MOONEY ◽  
ROBERT W. RHOADES

Single-unit recording and micropressure ejection techniques were used to test the effects of norepinephrine (NE) on the responses of neurons in the superficial layers (the stratum griseum superficiale and stratum opticum) of the hamster's superior colliculus (SC). Application of NE suppressed visually evoked responses by ≥30% in 75% of 40 neurons tested and produced ≥30% augmentation of responses in only 5%. The decrement in response strength was mimicked by application of the α2 adrenoceptor agonist, p-aminoclonidine, the nonspecific β agonist, isoproterenol, and the β1 agonist, dobutamine. These agents had similar effects on responses evoked by electrical stimulation of the optic chiasm and visual cortex. The α1 agonist, methoxamine, augmented the light-evoked responses of 53% of 49 SC cells by ≥30%, but had little effect on responses evoked by electrical stimulation of optic chiasm or visual cortex. The effects of adrenergic agonists upon the glutamate-evoked responses of SC cells that were synaptically “isolated” by concurrent application of Mg2+ were similar to those obtained during visual stimulation. Analysis of effects of NE on visually evoked and background activity indicated that application of this amine did not significantly enhance signal-to-noise ratios for most superficial layer SC neurons, and signal-to-noise ratios were in some cases reduced. These results indicate that NE acts primarily through α2 and β1 receptors to suppress the visual responses of SC neurons. Activation of either of these receptors reduces the responses of SC neurons to either of their two major visual inputs as well as to direct stimulation by glutamate, and it would thus appear that these effects are primarily postsynaptic.


Science ◽  
1970 ◽  
Vol 170 (3965) ◽  
pp. 1426-1428 ◽  
Author(s):  
J. T. McIlwain ◽  
H. L. Fields

1978 ◽  
Vol 41 (6) ◽  
pp. 1466-1494 ◽  
Author(s):  
R. W. Rhoades ◽  
L. M. Chalupa

1. In normal hamsters the visual cortex sends a retinotopically organized projection to the ipsilateral superior colliculus. 2. Acute or chronic unilateral ablations of visual cortex in adult animals decrease the incidence of directionally selective cells encountered in the superficial laminae of the ipsilateral colliculus, but not in the deeper layers (those ventral to the stratum opticum). 3. Unilateral ablations of visual cortex in infant hamsters induce an aberrant crossed projection to the contralateral superior colliculus, confirming the finding of Mustari and Lund (58) in the rat. Horseradish peroxidase (HRP) experiments demonstrated that the cells whose axons comprise the normal as well as the anomalous projection are pyramidal neurons in layer V of cortex. 4. In adult hamsters that underwent early brain damage, about 13% of the cells in the colliculus could be activated by stimulation of the contralateral visual cortex. Only 1 unit (of the 159 cells tested) could be driven by similar stimulation in normal adult hamsters. This indicates that the anomalous crossed projection forms functional synapses in the contralateral tectum. 5. No cells (of the 113 tested) could be activated from the contralateral cortex in hamsters that sustained chronic ablations of visual cortex in adulthood; thus indicating that there is some limited time period during development when unilateral ablations of visual cortex induce an anomalous corticotectal pathway. 6. The visual response properties of superior collicular neurons in the neonatally brain-damaged animals were compared to those of normal hamsters, as well as to those with acute or chronic ablations of visual cortex sustained in adulthood. 7. There was no indication that the anomalous projection contributes to the organization of normal visual response properties in the superior colliculus of the neonatally brain-damaged animals. In fact, the incidence of directionally selective cells in these hamsters was found to be significantly lower than that of normals in both the superficial and deep laminae of the colliculus. 8. We conclude that while unilateral damage of visual cortex in the hamster induces an anomalous corticotectal projection that makes functional synapses, this aberrant input does not compensate for missing, normal corticotectal pathway in the organization of superior collicular response properties.


1996 ◽  
Vol 75 (6) ◽  
pp. 2658-2661 ◽  
Author(s):  
S. Chimoto ◽  
Y. Iwamoto ◽  
H. Shimazu ◽  
K. Yoshida

1. Extracellular recordings were made from medium-lead burst neurons (MLBNs) in the paramedian pontomedullary reticular formation rostral and caudal to the abducens nucleus in the alert cat. 2. Single-pulse stimulation of the contralateral superior colliculus during intersaccadic intervals evoked no response in most MLBNs. When collicular stimulation was applied at the beginning of saccades, spikes of MLBNs were consistently evoked with short latencies. The shortest latency was 0.8 ms, indicating monosynaptic activation of MLBNs from the superior colliculus. 3. Results suggest that monosynaptic excitatory effects from the colliculus are concealed by inhibitory input from omnipause neurons (OPNs) during intersaccadic intervals and that the monosynaptic collicular activation is disclosed when this inhibition is removed by a pause in OPN activity at the beginning of saccades.


2020 ◽  
Vol 132 (6) ◽  
pp. 2000-2007 ◽  
Author(s):  
Soroush Niketeghad ◽  
Abirami Muralidharan ◽  
Uday Patel ◽  
Jessy D. Dorn ◽  
Laura Bonelli ◽  
...  

Stimulation of primary visual cortices has the potential to restore some degree of vision to blind individuals. Developing safe and reliable visual cortical prostheses requires assessment of the long-term stability, feasibility, and safety of generating stimulation-evoked perceptions.A NeuroPace responsive neurostimulation system was implanted in a blind individual with an 8-year history of bare light perception, and stimulation-evoked phosphenes were evaluated over 19 months (41 test sessions). Electrical stimulation was delivered via two four-contact subdural electrode strips implanted over the right medial occipital cortex. Current and charge thresholds for eliciting visual perception (phosphenes) were measured, as were the shape, size, location, and intensity of the phosphenes. Adverse events were also assessed.Stimulation of all contacts resulted in phosphene perception. Phosphenes appeared completely or partially in the left hemifield. Stimulation of the electrodes below the calcarine sulcus elicited phosphenes in the superior hemifield and vice versa. Changing the stimulation parameters of frequency, pulse width, and burst duration affected current thresholds for eliciting phosphenes, and increasing the amplitude or frequency of stimulation resulted in brighter perceptions. While stimulation thresholds decreased between an average of 5% and 12% after 19 months, spatial mapping of phosphenes remained consistent over time. Although no serious adverse events were observed, the subject experienced mild headaches and dizziness in three instances, symptoms that did not persist for more than a few hours and for which no clinical intervention was required.Using an off-the-shelf neurostimulator, the authors were able to reliably generate phosphenes in different areas of the visual field over 19 months with no serious adverse events, providing preliminary proof of feasibility and safety to proceed with visual epicortical prosthetic clinical trials. Moreover, they systematically explored the relationship between stimulation parameters and phosphene thresholds and discovered the direct relation of perception thresholds based on primary visual cortex (V1) neuronal population excitation thresholds.


1993 ◽  
Vol 69 (3) ◽  
pp. 953-964 ◽  
Author(s):  
P. W. Glimcher ◽  
D. L. Sparks

1. The first experiment of this study determined the effects of low-frequency stimulation of the monkey superior colliculus on spontaneous saccades in the dark. Stimulation trains, subthreshold for eliciting short-latency fixed-vector saccades, were highly effective at biasing the metrics (direction and amplitude) of spontaneous movements. During low-frequency stimulation, the distribution of saccade metrics was biased toward the direction and amplitude of movements induced by suprathreshold stimulation of the same collicular location. 2. Low-frequency stimulation biased the distribution of saccade metrics but did not initiate movements. The distribution of intervals between stimulation onset and the onset of the next saccade did not differ significantly from the distribution of intervals between an arbitrary point in time and the onset of the next saccade under unstimulated conditions. 3. Results of our second experiment indicate that low-frequency stimulation also influenced the metrics of visually guided saccades. The magnitude of the stimulation-induced bias increased as stimulation current or frequency was increased. 4. The time course of these effects was analyzed by terminating stimulation immediately before, during, or after visually guided saccades. Stimulation trains terminated at the onset of a movement were as effective as stimulation trains that continued throughout the movement. No effects were observed if stimulation ended 40–60 ms before the movement began. 5. These results show that low-frequency collicular stimulation can influence the direction and amplitude of spontaneous or visually guided saccades without initiating a movement. These data are compatible with the hypothesis that the collicular activity responsible for specifying the horizontal and vertical amplitude of a saccade differs from the type of collicular activity that initiates a saccade.


Sign in / Sign up

Export Citation Format

Share Document