Subdirect irreducibility and equational compactness in unary algebras

1970 ◽  
Vol 21 (1) ◽  
pp. 256-264 ◽  
Author(s):  
G�nter H. Wenzel

Alexander Abian. On the solvability of infinite systems of Boolean polynomial equations. Colloquium mathematicum, vol. 21 (1970), pp. 27–30. - Alexander Abian. Generalized completeness theorem and solvability of systems of Boolean polynomial equations. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 16 (1970), pp. 263–264. - Paul D. Bacsich. Injectivity in model theory. Colloquium mathematicum, vol. 25 (1972), pp. 165–176. - S. Bulman-Fleming. On equationally compact semilattices. Algebra universalis (Basel), vol. 2 no. 2 (1972), pp. 146–151. - G. Grätzer and H. Lakser. Equationally compact semilattices. Colloquium mathematicum, vol. 20 (1969), pp. 27–30. - David K. Haley. On compact commutative Noetherian rings. Mathematische Annalen, vol. 189 (1970), pp. 272–274. - Ralph McKenzie. ℵ1-incompactness of Z. Colloquium mathematicum, vol. 23 (1971), pp. 199–202. - Jan Mycielski. Some compactifications of general algebras. Colloquium mathematicum, vol. 13 no. 1 (1964), pp. 1–9. See Errata on page 281 of next paper. - Jan Mycielski and C. Ryll-Nardzewski. Equationally compact algebras II. Fundamenta mathematicae, vol. 61 (1968), pp. 271–281. Errata, Fundamenta mathematicae, vol. 62 (1968), p. 309. - L. Pacholski and B. Wȩglorz. Topologically compact structures and positive formulas. Colloquium mathematicum, vol. 19 (1968), pp. 37–42. - B. Wȩglorz. Compactness of algebraic systems. Bulletin de l'Academie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, vol. 13 (1965), pp. 705–706. - B. Wȩglorz. Equationally compact algebras(I). Fundamenta mathematicae, vol. 59 (1966), pp. 289–298. - B. Wȩglorz. Equationally compact algebras (III). Fundamenta mathematicae, vol. 60 (1967), pp. 89–93. - B. Wȩglorz. Completeness and compactness of lattices. Colloquium mathematicum, vol. 16 (1967), pp. 243–248. - B. Wȩglorz and A. Wojciechowska. Summability of pure extensions of relational structures. Colloquium mathematicum, vol. 19 (1968), pp. 27–35. - Günter H. Wenzel. Subdirect irreducibility and equational compactness of unary algebras 〈A; f〉. Archiv der Mathematik, vol. 21 (1970), pp. 256–264. - Günter H. Wenzel. On -atomic compact relational systems. Mathematische Annalen, vol. 194 (1971), pp. 12–18.

1975 ◽  
Vol 40 (1) ◽  
pp. 88-92 ◽  
Author(s):  
Walter Taylor


1973 ◽  
Vol 27 (2) ◽  
pp. 197-205 ◽  
Author(s):  
Bernhard Banaschewski ◽  
Evelyn Nelson


2005 ◽  
Vol 6 (2) ◽  
pp. 217 ◽  
Author(s):  
N.V. Loi ◽  
R. Wiegandt


1974 ◽  
Vol 4 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Evelyn Nelson


1983 ◽  
Vol 16 (1) ◽  
pp. 318-330 ◽  
Author(s):  
M. Mehdi Ebrahimi


1977 ◽  
Vol 20 ◽  
pp. 159-176 ◽  
Author(s):  
A. Pultr ◽  
J. Vinárek


Author(s):  
T. S. Blyth ◽  
J. C. Varlet

SynopsisWe consider a common abstraction of de Morgan algebras and Stone algebras which we call an MS-algebra. The variety of MS-algebras is easily described by adjoining only three simple equations to the axioms for a bounded distributive lattice. We first investigate the elementary properties of these algebras, then we characterise the least congruence which collapses all the elements of an ideal, and those ideals which are congruence kernels. We introduce a congruence which is similar to the Glivenko congruence in a p-algebra and show that the location of this congruence in the lattice of congruences is closely related to the subdirect irreducibility of the algebra. Finally, we give a complete description of the subdirectly irreducible MS-algebras.





2010 ◽  
Vol 52 (A) ◽  
pp. 19-32 ◽  
Author(s):  
TOMA ALBU

AbstractIn this survey paper we present some results relating the Goldie dimension, dual Krull dimension and subdirect irreducibility in modules, torsion theories, Grothendieck categories and lattices. Our interest in studying this topic is rooted in a nice module theoretical result of Carl Faith [Commun. Algebra27 (1999), 1807–1810], characterizing Noetherian modules M by means of the finiteness of the Goldie dimension of all its quotient modules and the ACC on its subdirectly irreducible submodules. Thus, we extend his result in a dual Krull dimension setting and consider its dualization, not only in modules, but also in upper continuous modular lattices, with applications to torsion theories and Grothendieck categories.



Sign in / Sign up

Export Citation Format

Share Document