Equivariant D-modules attached to nilpotent orbits in a semisimple Lie algebra

1998 ◽  
Vol 3 (4) ◽  
pp. 337-353 ◽  
Author(s):  
T. Levasseur
1998 ◽  
Vol 50 (5) ◽  
pp. 929-971 ◽  
Author(s):  
Abraham Broer

AbstractThe notion of decompositon class in a semisimple Lie algebra is a common generalization of nilpotent orbits and the set of regular semisimple elements.We prove that the closure of a decomposition class has many properties in common with nilpotent varieties, e.g., its normalization has rational singularities.The famous Grothendieck simultaneous resolution is related to the decomposition class of regular semisimple elements. We study the properties of the analogous commutative diagrams associated to an arbitrary decomposition class.


1992 ◽  
Vol 07 (23) ◽  
pp. 2077-2085 ◽  
Author(s):  
A. D. POPOV

The anti-self-duality equations for gauge fields in d = 4 and a generalization of these equations to dimension d = 4n are considered. For gauge fields with values in an arbitrary semisimple Lie algebra [Formula: see text] we introduce the ansatz which reduces the anti-self-duality equations in the Euclidean space ℝ4n to a system of equations breaking up into the well known Nahm's equations and some linear equations for scalar field φ.


2013 ◽  
Vol 28 (03n04) ◽  
pp. 1340006 ◽  
Author(s):  
OSCAR CHACALTANA ◽  
JACQUES DISTLER ◽  
YUJI TACHIKAWA

We study the local properties of a class of codimension-2 defects of the 6d [Formula: see text] theories of type J = A, D, E labeled by nilpotent orbits of a Lie algebra [Formula: see text], where [Formula: see text] is determined by J and the outer-automorphism twist around the defect. This class is a natural generalization of the defects of the six-dimensional (6d) theory of type SU (N) labeled by a Young diagram with N boxes. For any of these defects, we determine its contribution to the dimension of the Higgs branch, to the Coulomb branch operators and their scaling dimensions, to the four-dimensional (4d) central charges a and c and to the flavor central charge k.


2018 ◽  
Vol 46 (11) ◽  
pp. 4985-5005 ◽  
Author(s):  
Frederik Caenepeel

1994 ◽  
Vol 37 (3) ◽  
pp. 477-482 ◽  
Author(s):  
T. J. Hodges ◽  
M. P. Holland

Let D be the factor of the enveloping algebra of a semisimple Lie algebra by its minimal primitive ideal with trival central character. We give a geometric description of the Chern character ch: K0(D)→HC0(D) and the state (of the maximal ideal m) s: K0(D)→K0(D/m) = ℤ in terms of the Euler characteristic χ:K0()→ℤ, where is the associated flag variety.


2012 ◽  
Vol 23 (08) ◽  
pp. 1250086 ◽  
Author(s):  
INDRANIL BISWAS ◽  
PRALAY CHATTERJEE

We give a criterion for the Kostant–Kirillov form on an adjoint orbit in a real semisimple Lie group to be exact. We explicitly compute the second cohomology of all the nilpotent adjoint orbits in every complex simple Lie algebra.


Sign in / Sign up

Export Citation Format

Share Document