Mechanisms of induction and repair of DNA double-strand breaks by ionizing radiation: Some contradictions

1994 ◽  
Vol 33 (1) ◽  
pp. 45-61 ◽  
Author(s):  
Ulrich Hagen
2016 ◽  
Vol 9 (4) ◽  
pp. 821-827 ◽  
Author(s):  
Majid Valizadeh ◽  
Alireza Shirazi ◽  
Pantea Izadi ◽  
Javad Tavakkoli Bazzaz ◽  
Hamed Rezaeejam ◽  
...  

2019 ◽  
Vol 27 (4) ◽  
pp. 1200-1213 ◽  
Author(s):  
Ainhoa Nieto ◽  
Makoto R. Hara ◽  
Victor Quereda ◽  
Wayne Grant ◽  
Vanessa Saunders ◽  
...  

Abstract Cellular DNA is constantly under threat from internal and external insults, consequently multiple pathways have evolved to maintain chromosomal fidelity. Our previous studies revealed that chronic stress, mediated by continuous stimulation of the β2-adrenergic-βarrestin-1 signaling axis suppresses activity of the tumor suppressor p53 and impairs genomic integrity. In this pathway, βarrestin-1 (βarr1) acts as a molecular scaffold to promote the binding and degradation of p53 by the E3-ubiquitin ligase, MDM2. We sought to determine whether βarr1 plays additional roles in the repair of DNA damage. Here we demonstrate that in mice βarr1 interacts with p53-binding protein 1 (53BP1) with major consequences for the repair of DNA double-strand breaks. 53BP1 is a principle component of the DNA damage response, and when recruited to the site of double-strand breaks in DNA, 53BP1 plays an important role coordinating repair of these toxic lesions. Here, we report that βarr1 directs 53BP1 degradation by acting as a scaffold for the E3-ubiquitin ligase Rad18. Consequently, knockdown of βarr1 stabilizes 53BP1 augmenting the number of 53BP1 DNA damage repair foci following exposure to ionizing radiation. Accordingly, βarr1 loss leads to a marked increase in irradiation resistance both in cells and in vivo. Thus, βarr1 is an important regulator of double strand break repair, and disruption of the βarr1/53BP1 interaction offers an attractive strategy to protect cells against high levels of exposure to ionizing radiation.


Author(s):  
Carl N. Sprung ◽  
Raja S. Vasireddy ◽  
Tom C. Karagiannis ◽  
Shanon J. Loveridge ◽  
Roger F. Martin ◽  
...  

2009 ◽  
Vol 75 (3) ◽  
pp. S547-S548
Author(s):  
M. Heravi ◽  
T.T. Muanza ◽  
M. Todorova ◽  
Z. Rachid ◽  
B.J. Jean-Claude ◽  
...  

2008 ◽  
Vol 28 (20) ◽  
pp. 6413-6425 ◽  
Author(s):  
Lei Li ◽  
Elizabeth A. Monckton ◽  
Roseline Godbout

ABSTRACT DEAD box proteins are a family of putative RNA helicases associated with all aspects of cellular metabolism involving the modification of RNA secondary structure. DDX1 is a member of the DEAD box protein family that is overexpressed in a subset of retinoblastoma and neuroblastoma cell lines and tumors. DDX1 is found primarily in the nucleus, where it forms two to four large aggregates called DDX1 bodies. Here, we report a rapid redistribution of DDX1 in cells exposed to ionizing radiation, resulting in the formation of numerous foci that colocalize with γ-H2AX and phosphorylated ATM foci at sites of DNA double-strand breaks (DSBs). The formation of DDX1 ionizing-radiation-induced foci (IRIF) is dependent on ATM, which was shown to phosphorylate DDX1 both in vitro and in vivo. The treatment of cells with RNase H prevented the formation of DDX1 IRIF, suggesting that DDX1 is recruited to sites of DNA damage containing RNA-DNA structures. We have shown that DDX1 has RNase activity toward single-stranded RNA, as well as ADP-dependent RNA-DNA- and RNA-RNA-unwinding activities. We propose that DDX1 plays an RNA clearance role at DSB sites, thereby facilitating the template-guided repair of transcriptionally active regions of the genome.


Sign in / Sign up

Export Citation Format

Share Document