Number-conserving approach to the pairing-force model

1967 ◽  
Vol 202 (1) ◽  
pp. 504-513 ◽  
Author(s):  
Kenji Hara
Keyword(s):  
1967 ◽  
Vol 95 (2) ◽  
pp. 385-419 ◽  
Author(s):  
Kenji Hara
Keyword(s):  

1978 ◽  
Vol 295 (2) ◽  
pp. 204-210 ◽  
Author(s):  
B.I. Atalay ◽  
A. Mann ◽  
A. Zelicoff

1974 ◽  
Vol 218 (3) ◽  
pp. 461-469 ◽  
Author(s):  
B. Atalay ◽  
D.M. Brink ◽  
A. Mann

1968 ◽  
Vol 172 (4) ◽  
pp. 1022-1031 ◽  
Author(s):  
Giu Do Dang ◽  
R. M. Dreizler ◽  
Abraham Klein ◽  
Chi-Shiang Wu

2010 ◽  
pp. 50-56
Author(s):  
Pablo R. Rubiolo ◽  
Guy Chaigne ◽  
Pierre Peturand ◽  
Jérôme Bigot ◽  
Jean-François Desseignes ◽  
...  

2020 ◽  
Vol 110 (11-12) ◽  
pp. 758-762
Author(s):  
Daniel Gauder ◽  
Michael Biehler ◽  
Benedict Stampfer ◽  
Benjamin Häfner ◽  
Volker Schulze ◽  
...  

Das Forschungsprojekt „Prozessintegrierte Softsensorik zur Oberflächenkonditionierung beim Außenlängsdrehen von 42CrMo4“ widmet sich der Entstehung und der In-process-Erfassung von industriell relevanten Randschichtzuständen. Im Speziellen werden sogenannte White Layer und Eigenspannungszustände untersucht. Durch die modulare Verknüpfung von zerstörungsfreier Prüftechnik, Simulationsergebnissen und Prozesswissen mittels Datenfusion wird ein Softsensor erforscht. Dieser soll im Rahmen einer adaptiven Regelung des Drehprozesses eingesetzt werden und eine gezielte Einstellung von vorteilhaften Randschichtzuständen erlauben. The research project „Process-integrated soft sensor technology for surface conditioning during external longitudinal turning of 42CrMo4“ is dedicated to the formation and in-process-detection of surface layers with industrial relevance. In particular, so-called white layers and residual stresses are investigated. A soft sensor is being researched through the modular combination of non-destructive testing technology and process knowledge by means of data fusion. This is to be used in the context of an adaptive control of the turning process in order to adjust beneficial surface states.


2020 ◽  
Vol 121 ◽  
pp. 42-53 ◽  
Author(s):  
I.M. Sticco ◽  
G.A. Frank ◽  
F.E. Cornes ◽  
C.O. Dorso

2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110080
Author(s):  
Zheqin Yu ◽  
Jianping Tan ◽  
Shuai Wang

Shear stress is often present in the blood flow within blood-contacting devices, which is the leading cause of hemolysis. However, the simulation method for blood flow with shear stress is still not perfect, especially the multiphase flow model and experimental verification. In this regard, this study proposes an enhanced discrete phase model for multiphase flow simulation of blood flow with shear stress. This simulation is based on the discrete phase model (DPM). According to the multiphase flow characteristics of blood, a virtual mass force model and a pressure gradient influence model are added to the calculation of cell particle motion. In the experimental verification, nozzle models were designed to simulate the flow with shear stress, varying the degree of shear stress through different nozzle sizes. The microscopic flow was measured by the Particle Image Velocimetry (PIV) experimental method. The comparison of the turbulence models and the verification of the simulation accuracy were carried out based on the experimental results. The result demonstrates that the simulation effect of the SST k- ω model is better than other standard turbulence models. Accuracy analysis proves that the simulation results are accurate and can capture the movement of cell-level particles in the flow with shear stress. The results of the research are conducive to obtaining accurate and comprehensive analysis results in the equipment development phase.


Sign in / Sign up

Export Citation Format

Share Document