Factor group of a direct product of Abelian groups by their direct sum

1981 ◽  
Vol 29 (4) ◽  
pp. 252-257 ◽  
Author(s):  
S. V. Rychkov
2001 ◽  
Vol 64 (1) ◽  
pp. 71-79 ◽  
Author(s):  
P. Schultz

G is reduced torsion-free A belian group such that for every direct sum ⊕G of copies of G, Ext(⊕G, ⊕G) = 0 if and only if G is a free module over a rank 1 ring. For every direct product ΠG of copies of G, Ext(ΠG,ΠG) = 0 if and only if G is cotorsion.This paper began as a Research Report of the Department of Mathematics of the University of Western Australia in 1988, and circulated among members of the Abelian group community. However, it was never submitted for publication. The results have been cited, widely, and since copies of the original research report are no longer available, the paper is presented here in its original form in Sections 1 to 5. In Section 6, I survey the progress that has been made in the topic since 1988.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Brendan Goldsmith ◽  
Ketao Gong

AbstractNecessary and sufficient conditions to ensure that the direct sum of two Abelian groups with zero entropy is again of zero entropy are still unknown; interestingly the same problem is also unresolved for direct sums of Hopfian and co-Hopfian groups.We obtain sufficient conditions in some situations by placing restrictions on the homomorphisms between the groups. There are clear similarities between the various cases but there is not a simple duality involved.


1961 ◽  
Vol 13 ◽  
pp. 192-200 ◽  
Author(s):  
Christine W. Ayoub

In this paper we consider again the group-theoretic configuration studied in (1) and (2). Let G be an additive group (not necessarily abelian), let M be a system of operators for G, and let ϕ be a family of admissible subgroups which form a complete lattice relative to intersection and compositum. Under these circumstances we call G an M — ϕ group. In (1) we studied the normal chains for an M — ϕ group and the relation between certain normal chains. In (2) we considered the possibility of representing an M — ϕ group as the direct sum of certain of its subgroups, and proved that with suitable restrictions on the M — ϕ group the analogue of the following theorem for finite groups holds: A group is the direct product of its Sylow subgroups if and only if it is nilpotent. Here we show that under suitable hypotheses (hypotheses (I), (II), and (III) stated at the beginning of §3) it is possible to generalize to M — ϕ groups many of the Sylow theorems of classical group theorem.


1981 ◽  
Vol 33 (4) ◽  
pp. 817-825 ◽  
Author(s):  
Paul Hill

All groups herein are assumed to be abelian. It was not until the 1940's that it was known that a subgroup of an infinite direct sum of finite cyclic groups is again a direct sum of cyclics. This result rests on a general criterion due to Kulikov [7] for a primary abelian group to be a direct sum of cyclic groups. If G is p-primary, Kulikov's criterion presupposes that G has no elements (other than zero) having infinite p-height. For such a group G, the criterion is simply that G be the union of an ascending sequence of subgroups Hn where the heights of the elements of Hn computed in G are bounded by some positive integer λ(n). The theory of abelian groups has now developed to the point that totally projective groups currently play much the same role, at least in the theory of torsion groups, that direct sums of cyclic groups and countable groups played in combination prior to the discovery of totally projective groups and their structure beginning with a paper by R. Nunke [11] in 1967.


1990 ◽  
Vol 33 (1) ◽  
pp. 11-17 ◽  
Author(s):  
K. Benabdallah ◽  
C. Piché

AbstractThe class of primary abelian groups whose subsocles are purifiable is not yet completely characterized and it contains the class of direct sums of cyclic groups and torsion complete groups. In sharp constrast with this, the class of groups whose p2-bounded subgroups are purifiable consist only of those groups which are the direct sum of a bounded and a divisible group. Various tools are developed and a short application to the pure envelopes of cyclic subgroups is given in the last section.


Author(s):  
Esmat Alamshahi ◽  
Mohammad Reza R. Moghaddam ◽  
Farshid Saeedi

Let [Formula: see text] be a group and [Formula: see text] be the [Formula: see text]-absolute center of [Formula: see text], that is, the set of all elements of [Formula: see text] fixed by all class preserving automorphisms of [Formula: see text]. In this paper, we classify all finite groups [Formula: see text], whose [Formula: see text]-absolute central factors are isomorphic to the direct product of cyclic groups, [Formula: see text] and [Formula: see text]. Moreover, we consider finite groups which can be written as the union of centralizers of class preserving automorphisms and study the structure of [Formula: see text] for groups, in which the number of distinct centralizers of class preserving automorphisms is equal to 4 or 5.


1995 ◽  
Vol 47 (6) ◽  
pp. 1253-1273 ◽  
Author(s):  
Arne Ledet

AbstractLet L/K be a finite Galois extension in characteristic ≠ 2, and consider a non-split Galois theoretical embedding problem over L/K with cyclic kernel of order 2. In this paper, we prove that if the Galois group of L/K is the direct product of two subgroups, the obstruction to solving the embedding problem can be expressed as the product of the obstructions to related embedding problems over the corresponding subextensions of L/K and certain quaternion algebra factors in the Brauer group of K. In connection with this, the obstructions to realising non-abelian groups of order 8 and 16 as Galois groups over fields of characteristic ≠ 2 are calculated, and these obstructions are used to consider automatic realisations between groups of order 4, 8 and 16.


2011 ◽  
Vol 3 (2) ◽  
pp. 291-301
Author(s):  
M. A. Rajan ◽  
N. M. Kembhavimath ◽  
V. Lokesha

Vertices of the graphs are labeled from the set of natural numbers from 1 to the order of the given graph. Vertex adjacency label set (AVLS) is the set of ordered pair of vertices and its corresponding label of the graph. A notion of vertex adjacency label number (VALN) is introduced in this paper. For each VLS, VLN of graph is the sum of labels of all the adjacent pairs of the vertices of the graph. is the maximum number among all the VALNs of the  different labeling of the graph and the corresponding VALS is defined as maximal vertex  adjacency label set . In this paper  for different graph operations are discussed. Keywords: Subdivision; Graph labeling; Direct sum; Direct product.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i26222                  J. Sci. Res. 3 (2), 291-301 (2011) 


Author(s):  
Roland Schmidt

AbstractWe solve the following problem which was posed by Barnes in 1962. For which abelian groups G and H of the same prime power order is it possible to embed the subgroup lattice of G in that of H? It follows from Barnes' results and a theorem of Herrmann and Huhn that if there exists such an embedding and G contains three independent elements of order p2, then G and H are isomorphic. This reduces the problem to the case that G is the direct product of cyclic p-groups only two of which have order larger than p. We determine all groups H for which the desired embedding exists.


Author(s):  
Oteo Mutzbauer

AbstractA composition sequence for a torsion-free abelian group A is an increasing sequenceof pure subgroups with rank 1 quotients and union A. Properties of A can be described by the sequence of types of these quotients. For example, if A is uniform, that is all the types in some sequence are equal, then A is complete decomposable if it is homogeneous. If A has finite rank and all permutations ofone of its type sequences can be realized, then A is quasi-isomorphic to a direct sum of uniform groups.


Sign in / Sign up

Export Citation Format

Share Document