Occupation times for nonhomogeneous Markov chains with discrete time

1992 ◽  
Vol 61 (1) ◽  
pp. 1846-1852
Author(s):  
S. S. Vallander

1978 ◽  
Vol 7 (2) ◽  
pp. 131-139 ◽  
Author(s):  
Thomas R. Fleming ◽  
David P. Harrington


1971 ◽  
Vol 8 (02) ◽  
pp. 381-390 ◽  
Author(s):  
P. J. Pedler

Consider first a Markov chain with two ergodic states E 1 and E 2, and discrete time parameter set {0, 1, 2, ···, n}. Define the random variables Z 0, Z 1, Z 2, ···, Zn by then the conditional probabilities for k = 1,2,···, n, are independent of k. Thus the matrix of transition probabilities is



1971 ◽  
Vol 8 (2) ◽  
pp. 381-390 ◽  
Author(s):  
P. J. Pedler

Consider first a Markov chain with two ergodic states E1 and E2, and discrete time parameter set {0, 1, 2, ···, n}. Define the random variables Z0, Z1, Z2, ···, Znby then the conditional probabilities for k = 1,2,···, n, are independent of k. Thus the matrix of transition probabilities is



1984 ◽  
Vol 27 (5) ◽  
pp. 3022-3038 ◽  
Author(s):  
S. S. Vallander


Author(s):  
Yuri Suhov ◽  
Mark Kelbert
Keyword(s):  


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nikolaos Halidias

Abstract In this note we study the probability and the mean time for absorption for discrete time Markov chains. In particular, we are interested in estimating the mean time for absorption when absorption is not certain and connect it with some other known results. Computing a suitable probability generating function, we are able to estimate the mean time for absorption when absorption is not certain giving some applications concerning the random walk. Furthermore, we investigate the probability for a Markov chain to reach a set A before reach B generalizing this result for a sequence of sets A 1 , A 2 , … , A k {A_{1},A_{2},\dots,A_{k}} .



1967 ◽  
Vol 4 (1) ◽  
pp. 192-196 ◽  
Author(s):  
J. N. Darroch ◽  
E. Seneta

In a recent paper, the authors have discussed the concept of quasi-stationary distributions for absorbing Markov chains having a finite state space, with the further restriction of discrete time. The purpose of the present note is to summarize the analogous results when the time parameter is continuous.





Sign in / Sign up

Export Citation Format

Share Document