Shimura varieties and twisted orbital integrals

1984 ◽  
Vol 269 (3) ◽  
pp. 287-300 ◽  
Author(s):  
Robert E. Kottwitz
2002 ◽  
Vol 54 (2) ◽  
pp. 352-395 ◽  
Author(s):  
Thomas J. Haines

AbstractWe study the cohomology of connected components of Shimura varieties coming from the group GSp2g, by an approach modeled on the stabilization of the twisted trace formula, due to Kottwitz and Shelstad. More precisely, for each character ϖ on the group of connected components of we define an operator L(ω) on the cohomology groups with compact supports Hic(, ), and then we prove that the virtual trace of the composition of L(ω) with a Hecke operator f away from p and a sufficiently high power of a geometric Frobenius , can be expressed as a sum of ω-weighted (twisted) orbital integrals (where ω-weighted means that the orbital integrals and twisted orbital integrals occuring here each have a weighting factor coming from the character ϖ). As the crucial step, we define and study a new invariant α1(γ0; γ, δ) which is a refinement of the invariant α(γ0; γ, δ) defined by Kottwitz. This is done by using a theorem of Reimann and Zink.


2010 ◽  
Vol 9 (4) ◽  
pp. 847-895 ◽  
Author(s):  
Sug Woo Shin

AbstractIgusa varieties are smooth varieties in positive characteristic p which are closely related to Shimura varieties and Rapoport–Zink spaces. One motivation for studying Igusa varieties is to analyse the representations in the cohomology of Shimura varieties which may be ramified at p. The main purpose of this work is to stabilize the trace formula for the cohomology of Igusa varieties arising from a PEL datum of type (A) or (C). Our proof is unconditional thanks to the recent proof of the fundamental lemma by Ngô, Waldspurger and many others.An earlier work of Kottwitz, which inspired our work and proves the stable trace formula for the special fibres of PEL Shimura varieties with good reduction, provides an explicit way to stabilize terms at ∞. Stabilization away from p and ∞ is carried out by the usual Langlands–Shelstad transfer as in work of Kottwitz. The key point of our work is to develop an explicit method to handle the orbital integrals at p. Our approach has the technical advantage that we do not need to deal with twisted orbital integrals or the twisted fundamental lemma.One application of our formula, among others, is the computation of the arithmetic cohomology of some compact PEL-type Shimura varieties of type (A) with non-trivial endoscopy. This is worked out in a preprint of the author's entitled ‘Galois representations arising from some compact Shimura varieties’.


Author(s):  
Jean-Michel Bismut

This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.


2018 ◽  
Vol 2020 (13) ◽  
pp. 3902-3926
Author(s):  
Réda Boumasmoud ◽  
Ernest Hunter Brooks ◽  
Dimitar P Jetchev

Abstract We consider cycles on three-dimensional Shimura varieties attached to unitary groups, defined over extensions of a complex multiplication (CM) field $E$, which appear in the context of the conjectures of Gan et al. [6]. We establish a vertical distribution relation for these cycles over an anticyclotomic extension of $E$, complementing the horizontal distribution relation of [8], and use this to define a family of norm-compatible cycles over these fields, thus obtaining a universal norm construction similar to the Heegner $\Lambda $-module constructed from Heegner points.


Author(s):  
Dinakar Muthiah ◽  
Alex Weekes ◽  
Oded Yacobi

AbstractIn their study of local models of Shimura varieties for totally ramified extensions, Pappas and Rapoport posed a conjecture about the reducedness of a certain subscheme of {n\times n} matrices. We give a positive answer to their conjecture in full generality. Our main ideas follow naturally from two of our previous works. The first is our proof of a conjecture of Kreiman, Lakshmibai, Magyar, and Weyman on the equations defining type A affine Grassmannians. The second is the work of the first two authors and Kamnitzer on affine Grassmannian slices and their reduced scheme structure. We also present a version of our argument that is almost completely elementary: the only non-elementary ingredient is the Frobenius splitting of Schubert varieties.


Sign in / Sign up

Export Citation Format

Share Document