Nonresonance below the first eigenvalue for a semilinear elliptic problem

1988 ◽  
Vol 281 (4) ◽  
pp. 589-610 ◽  
Author(s):  
Djairo G. De Figueiredo ◽  
Jean-Pierre Gossez
2012 ◽  
Vol 14 (03) ◽  
pp. 1250021 ◽  
Author(s):  
FRANCISCO ODAIR DE PAIVA

This paper is devoted to the study of existence, nonexistence and multiplicity of positive solutions for the semilinear elliptic problem [Formula: see text] where Ω is a bounded domain of ℝN, λ ∈ ℝ and g(x, u) is a Carathéodory function. The obtained results apply to the following classes of nonlinearities: a(x)uq + b(x)up and c(x)(1 + u)p (0 ≤ q < 1 < p). The proofs rely on the sub-super solution method and the mountain pass theorem.


2005 ◽  
Vol 2005 (2) ◽  
pp. 95-104
Author(s):  
M. Ouanan ◽  
A. Touzani

We study the existence of nontrivial solutions for the problemΔu=u, in a bounded smooth domainΩ⊂ℝℕ, with a semilinear boundary condition given by∂u/∂ν=λu−W(x)g(u), on the boundary of the domain, whereWis a potential changing sign,ghas a superlinear growth condition, and the parameterλ∈]0,λ1];λ1is the first eigenvalue of the Steklov problem. The proofs are based on the variational and min-max methods.


1991 ◽  
Vol 43 (3) ◽  
pp. 449-460 ◽  
Author(s):  
W. Allegretto ◽  
L. S. Yu

AbstractWe consider a semilinear elliptic problem , (n > 2m). Under suitable conditions on f, we show the existence of a decaying positive solution. We do not employ radial arguments. Our main tools are weighted spaces, various applications of the Mountain Pass Theorem and LP regularity estimates of Agmon. We answer an open question of Kusano, Naito and Swanson [Canad. J. Math. 40(1988), 1281-1300] in the superlinear case: , and improve the results of Dalmasso [C. R. Acad. Sci. Paris 308(1989), 411-414] for the case .


1991 ◽  
Vol 118 (3-4) ◽  
pp. 305-326
Author(s):  
M. A. Herrero ◽  
J. J. L. Velázquez

SynopsisWe analyse the set of nonnegative, global, and radial solutions (radial solutions, for short) of the equationwhere 0 < p < 1, and is a radial and almost everywhere nonnegative function. We show that radial solutions of (E) exist if f(r) = o(r2p/1−1−p) or if f(r) ≈ cr2p/1−p as r → ∞, whereWhen f(r) = c*r2p/1−p + h(r) with h(r) = o(r2p/1−p) as r → ∞, radial solutions continue to exist if h(r) is sufficiently small at infinity. Existence, however, breaks down if h(r) > 0,Whenever they exist, radial solutions are characterised in terms of their asymptotic behaviour as r → ∞.


Sign in / Sign up

Export Citation Format

Share Document