Analysis of the stress state of thick-walled high-pressure vessels by the finite-element method

1984 ◽  
Vol 16 (1) ◽  
pp. 73-76
Author(s):  
N. G. Krishchuk
1992 ◽  
Vol 114 (2) ◽  
pp. 209-212 ◽  
Author(s):  
A. Chaaban ◽  
M. Jutras

The finite element method has been used to investigate the stress field in threaded end closures of thick-walled high pressure vessels. A set of elastic analyses of vessels with 5, 8, 11, 15, 20 and 25 standard Buttress threads was used to propose a method for predicting the load distribution along the length of the thread. Root stress index factors in the region of the first three active threads are also included. The results of the present work contribute to the development of the new division of the ASME Pressure Vessel Code which is related to thick-walled high pressure vessels.


Author(s):  
Benjamin Hantz ◽  
Venkata M. K. Akula ◽  
John Leroux

For pressure vessels, loss of thickness detected during scheduled maintenance utilizing UT scans can be assessed based on Level 1 or 2 analyses as per API 579 guidelines. However, Level 1 and 2 analyses can point to excessively conservative assessments. Level – 3 assessments utilizing the finite element method can be performed for a more accurate estimate of the load carrying capacity of the corroded structure. However, for a high fidelity structural response prediction using the finite element method, the characteristics of the model must be accurately represented. Although the three nonlinearities, namely, the geometric, material, and contact nonlinearities can be adequately included in a finite element analysis, procedures to accurately include the thickness measurements are not readily available. In this paper, a tool to map thicknesses obtained from UT scans onto a shell based finite element models, to perform Level – 3 analyses is discussed. The tool works in conjunction with Abaqus/CAE and is illustrated for two different structures following the elastic-plastic analysis procedure outlined in the API 579 document. The tool is intended only as a means to reduce the modeling time associated with mapping thicknesses. The results of the analyses and insights gained are presented.


1976 ◽  
Vol 8 (2) ◽  
pp. 165-170 ◽  
Author(s):  
V. V. Kirichevskii ◽  
V. N. Kislookii ◽  
A. S. Sakharov

Author(s):  
К. П. Барахов

Thin-walled structures may contain defects as cracks and holes that are leftovers of the material the construction, is made of or they occur during the operation as a result of, for example, mechanical damage. The presence of holes in the plate causes a concentration of stresses at the boundary of the holes and ultimately leads to premature failure of the structural element. Repair of local damage of modern aircraft structures can be made by creating overlays that are glued to the main structure. The overlay takes on part of the load, unloading the damaged area. This method of repair provides tightness and aerodynamic efficiency to the structure. The calculation of the stress state of such glued structures is usually performed by using the finite element method. The classic models of the stress state of overlapped joints are one-dimensional. That is, the change of the stress state along only one coordinate is considered. At the same time, the connections of a rectangular form are also considered. The purpose of this work is to create a mathematical model of the stress state of circular axisymmetric adhesive joints and to build an appropriate analytical solution to the problem. It is assumed that the bending of the plates is absent; the deformation of the plates is even by thickness. The adhesive layer works only on the shift. The main plate and the overlay are considered isotropic. The solution is built on polar coordinates. The stress state of the connection depends only on the radial coordinate, i.e. one-dimensional. The solution is obtained in analytical form. This mathematical model is a generalization of the classical model of the adhesive connection of Volkersen to a circular or annular region and is considered for the first time. Boundary conditions are met exactly. The satisfaction of marginal conditions, as well as boundary conditions, leads to a system of linear equations with respect to the unknown coefficients of the obtained solutions. The model problem is solved and the numerical results are compared with the results of calculations performed by using the finite element method. It is shown that the proposed model has sufficient accuracy for engineering problems and can be used to solve problems of the design of aerospace structures.


2006 ◽  
Vol 129 (3) ◽  
pp. 550-555
Author(s):  
Ping Chen ◽  
Caifu Qian ◽  
Yunxiao Zhang

Because of large scale and heavy weight, end closures of high pressure vessels are usually hard to assemble and disassemble. In this paper, a new quick-opening seal device connected by D-shaped shearing bolts is introduced. This device is compact in structure, reliable in sealing, easy in assembly and disassembly, and very appropriate for end closures of pressure vessels or for pipe joints. Strength calculation formulas for the major parts are proposed analytically, and stress analysis using the finite element method for a C-ring seal has been performed. An application of this device shows that its sealing and strength is reliable.


Sign in / Sign up

Export Citation Format

Share Document