A new solvable case of the traveling salesman problem

1973 ◽  
Vol 4 (1) ◽  
pp. 347-348 ◽  
Author(s):  
Maciej M. Sysło
1998 ◽  
Vol 2 (2) ◽  
pp. 177-191 ◽  
Author(s):  
Md. Fazle Baki ◽  
S. N. Kabadi

Two instances of the traveling salesman problem, on the same node set {1,2,…,n} but with different cost matrices C and C′ , are equivalent iff there exist {ai,bi: i=1,…, n} such that for any 1≤i, j≤n,i≠j,C′(i,j)=C(i,j)+ai+bj [7]. One of the well-solved special cases of the traveling salesman problem (TSP) is the convex-hull-and-line TSP. We extend the solution scheme for this class of TSP given in [9] to a more general class which is closed with respect to the above equivalence relation. The cost matrix in our general class is a certain composition of Kalmanson matrices. This gives a new, non-trivial solvable case of TSP.


2007 ◽  
Vol 5 (1) ◽  
pp. 1-9
Author(s):  
Paulo Henrique Siqueira ◽  
Sérgio Scheer ◽  
Maria Teresinha Arns Steiner

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Jin Zhang ◽  
Li Hong ◽  
Qing Liu

The whale optimization algorithm is a new type of swarm intelligence bionic optimization algorithm, which has achieved good optimization results in solving continuous optimization problems. However, it has less application in discrete optimization problems. A variable neighborhood discrete whale optimization algorithm for the traveling salesman problem (TSP) is studied in this paper. The discrete code is designed first, and then the adaptive weight, Gaussian disturbance, and variable neighborhood search strategy are introduced, so that the population diversity and the global search ability of the algorithm are improved. The proposed algorithm is tested by 12 classic problems of the Traveling Salesman Problem Library (TSPLIB). Experiment results show that the proposed algorithm has better optimization performance and higher efficiency compared with other popular algorithms and relevant literature.


Sign in / Sign up

Export Citation Format

Share Document