scholarly journals An Improved Whale Optimization Algorithm for the Traveling Salesman Problem

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Jin Zhang ◽  
Li Hong ◽  
Qing Liu

The whale optimization algorithm is a new type of swarm intelligence bionic optimization algorithm, which has achieved good optimization results in solving continuous optimization problems. However, it has less application in discrete optimization problems. A variable neighborhood discrete whale optimization algorithm for the traveling salesman problem (TSP) is studied in this paper. The discrete code is designed first, and then the adaptive weight, Gaussian disturbance, and variable neighborhood search strategy are introduced, so that the population diversity and the global search ability of the algorithm are improved. The proposed algorithm is tested by 12 classic problems of the Traveling Salesman Problem Library (TSPLIB). Experiment results show that the proposed algorithm has better optimization performance and higher efficiency compared with other popular algorithms and relevant literature.

Technologies ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 61 ◽  
Author(s):  
Christos Papalitsas ◽  
Theodore Andronikos

GVNS, which stands for General Variable Neighborhood Search, is an established and commonly used metaheuristic for the expeditious solution of optimization problems that belong to the NP-hard class. This paper introduces an expansion of the standard GVNS that borrows principles from quantum computing during the shaking stage. The Traveling Salesman Problem with Time Windows (TSP-TW) is a characteristic NP-hard variation in the standard Traveling Salesman Problem. One can utilize TSP-TW as the basis of Global Positioning System (GPS) modeling and routing. The focus of this work is the study of the possible advantages that the proposed unconventional GVNS may offer to the case of garbage collector trucks GPS. We provide an in-depth presentation of our method accompanied with comprehensive experimental results. The experimental information gathered on a multitude of TSP-TW cases, which are contained in a series of tables, enable us to deduce that the novel GVNS approached introduced here can serve as an effective solution for this sort of geographical problems.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1650
Author(s):  
Zhaojun Zhang ◽  
Zhaoxiong Xu ◽  
Shengyang Luan ◽  
Xuanyu Li ◽  
Yifei Sun

Opposition-based learning (OBL) has been widely used to improve many swarm intelligent optimization (SI) algorithms for continuous problems during the past few decades. When the SI optimization algorithms apply OBL to solve discrete problems, the construction and utilization of the opposite solution is the key issue. Ant colony optimization (ACO) generally used to solve combinatorial optimization problems is a kind of classical SI optimization algorithm. Opposition-based ACO which is combined in OBL is proposed to solve the symmetric traveling salesman problem (TSP) in this paper. Two strategies for constructing opposite path by OBL based on solution characteristics of TSP are also proposed. Then, in order to use information of opposite path to improve the performance of ACO, three different strategies, direction, indirection, and random methods, mentioned for pheromone update rules are discussed individually. According to the construction of the inverse solution and the way of using it in pheromone updating, three kinds of improved ant colony algorithms are proposed. To verify the feasibility and effectiveness of strategies, two kinds of ACO algorithms are employed to solve TSP instances. The results demonstrate that the performance of opposition-based ACO is better than that of ACO without OBL.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1477
Author(s):  
Chun-Yao Lee ◽  
Guang-Lin Zhuo

This paper proposes a hybrid whale optimization algorithm (WOA) that is derived from the genetic and thermal exchange optimization-based whale optimization algorithm (GWOA-TEO) to enhance global optimization capability. First, the high-quality initial population is generated to improve the performance of GWOA-TEO. Then, thermal exchange optimization (TEO) is applied to improve exploitation performance. Next, a memory is considered that can store historical best-so-far solutions, achieving higher performance without adding additional computational costs. Finally, a crossover operator based on the memory and a position update mechanism of the leading solution based on the memory are proposed to improve the exploration performance. The GWOA-TEO algorithm is then compared with five state-of-the-art optimization algorithms on CEC 2017 benchmark test functions and 8 UCI repository datasets. The statistical results of the CEC 2017 benchmark test functions show that the GWOA-TEO algorithm has good accuracy for global optimization. The classification results of 8 UCI repository datasets also show that the GWOA-TEO algorithm has competitive results with regard to comparison algorithms in recognition rate. Thus, the proposed algorithm is proven to execute excellent performance in solving optimization problems.


2021 ◽  
pp. 1-17
Author(s):  
Maodong Li ◽  
Guanghui Xu ◽  
Yuanwang Fu ◽  
Tingwei Zhang ◽  
Li Du

 In this paper, a whale optimization algorithm based on adaptive inertia weight and variable spiral position updating strategy is proposed. The improved algorithm is used to solve the problem that the whale optimization algorithm is more dependent on the randomness of the parameters, so that the algorithm’s convergence accuracy and convergence speed are insufficient. The adaptive inertia weight, which varies with the fitness of individual whales, is used to balance the algorithm’s global search ability and local exploitation ability. The variable spiral position update strategy based on the collaborative convergence mechanism is used to dynamically adjust the search range and search accuracy of the algorithm. The effective combination of the two can make the improved whale optimization algorithm converge to the optimal solution faster. It had been used 18 international standard test functions, including unimodal function, multimodal function, and fixed-dimensional function to test the improved whale optimization algorithm in this paper. The test results show that the improved algorithm has faster convergence speed and higher algorithm accuracy than the original algorithm and several classic algorithms. The algorithm can quickly converge to near the optimal value in the early stage, and then effectively jump out of the local optimal through adaptive adjustment, and has a certain ability to solve large-scale optimization problems.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 884
Author(s):  
Petr Stodola ◽  
Karel Michenka ◽  
Jan Nohel ◽  
Marian Rybanský

The dynamic traveling salesman problem (DTSP) falls under the category of combinatorial dynamic optimization problems. The DTSP is composed of a primary TSP sub-problem and a series of TSP iterations; each iteration is created by changing the previous iteration. In this article, a novel hybrid metaheuristic algorithm is proposed for the DTSP. This algorithm combines two metaheuristic principles, specifically ant colony optimization (ACO) and simulated annealing (SA). Moreover, the algorithm exploits knowledge about the dynamic changes by transferring the information gathered in previous iterations in the form of a pheromone matrix. The significance of the hybridization, as well as the use of knowledge about the dynamic environment, is examined and validated on benchmark instances including small, medium, and large DTSP problems. The results are compared to the four other state-of-the-art metaheuristic approaches with the conclusion that they are significantly outperformed by the proposed algorithm. Furthermore, the behavior of the algorithm is analyzed from various points of view (including, for example, convergence speed to local optimum, progress of population diversity during optimization, and time dependence and computational complexity).


2010 ◽  
Vol 1 (2) ◽  
pp. 82-92 ◽  
Author(s):  
Gilbert Laporte

The Traveling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP) are two of the most popular problems in the field of combinatorial optimization. Due to the study of these two problems, there has been a significant growth in families of exact and heuristic algorithms being used today. The purpose of this paper is to show how their study has fostered developments of the most popular algorithms now applied to the solution of combinatorial optimization problems. These include exact algorithms, classical heuristics and metaheuristics.


Sign in / Sign up

Export Citation Format

Share Document