The fitting class generated by a finite soluble group

1991 ◽  
Vol 159 (1) ◽  
pp. 151-169 ◽  
Author(s):  
R. A. Bryce
1974 ◽  
Vol 17 (4) ◽  
pp. 385-388
Author(s):  
A. R. Makan

The Fitting class of finite soluble π-groups, where π is an arbitrary set of primes, has the property that each complement of an -avoided, complemented chief factor of any finite soluble group G contains an -injector of G. In other words, each -avoided, complemented chief factor of G is -complemented in the sense of Hartley (see [2]).


1970 ◽  
Vol 11 (4) ◽  
pp. 395-400 ◽  
Author(s):  
A. Makan

Let name be a class of finite soluble groups with the properties: (1) is a Fitting class (i.e. normal subgroup closed and normal product closed) and (2) if N ≦ H ≦ G ∈, N ⊲ G and H/N is a p-group for some prime p, then H ∈. Then is called a Fischer class. In any finite soluble group G, there exists a unique conjugacy class of maximal -subgroups V called the -injectors which have the property that for every N◃◃G, N ∩ V is a maximal -subgroup of N [3]. 3. By Lemma 1 (4) [7] an -injector V of G covers or avoids a chief factor of G. As in [7] we will call a chief factor -covered or -avoided according as V covers or avoids it and -complemented if it is complemented and each of its complements contains some -injector. Furthermore we will call a chief factor partially-complemented if it is complemented and at least one of its complements contains some -injector of G.


Author(s):  
Martin Menth

A class of groups that is closed with respect to subnormal subgroups and normal products is called a Fitting class. Given a finite soluble group G, one may ask for the Fitting class (G) generated by G, that is the intersection of all Fitting classes containing G. For simple or nilpotent groups G it is easy to compute (G), but in other cases the determination of (G) seems to be surprisingly difficult, and there is no general method of solving this problem. In recent years there has been a lot of work in this area, see for instance Bryce and Cossey[l], [2], Hawkes[6] (or [5], IX. 9. Var. II), Heineken[7] and McCann[10].


1970 ◽  
Vol 22 (1) ◽  
pp. 36-40 ◽  
Author(s):  
J. W. Wamsley

Mennicke (2) has given a class of three-generator, three-relation finite groups. In this paper we present a further class of three-generator, threerelation groups which we show are finite.The groups presented are defined as:with α|γ| ≠ 1, β|γ| ≠ 1, γ ≠ 0.We prove the following result.THEOREM 1. Each of the groups presented is a finite soluble group.We state the following theorem proved by Macdonald (1).THEOREM 2. G1(α, β, 1) is a finite nilpotent group.1. In this section we make some elementary remarks.


1975 ◽  
Vol 27 (4) ◽  
pp. 837-851 ◽  
Author(s):  
M. J. Tomkinson

W. Gaschutz [5] introduced a conjugacy class of subgroups of a finite soluble group called the prefrattini subgroups. These subgroups have the property that they avoid the complemented chief factors of G and cover the rest. Subsequently, these results were generalized by Hawkes [12], Makan [14; 15] and Chambers [2]. Hawkes [12] and Makan [14] obtained conjugacy classes of subgroups which avoid certain complemented chief factors associated with a saturated formation or a Fischer class. Makan [15] and Chambers [2] showed that if W, D and V are the prefrattini subgroup, 𝔍-normalizer and a strongly pronormal subgroup associated with a Sylow basis S, then any two of W, D and V permute and the products and intersections of these subgroups have an explicit cover-avoidance property.


Author(s):  
R. J. Cook ◽  
James Wiecold ◽  
A. G. Wellamson

AbstractIt is proved that a finite soluble group of order n has at most (n − 1)/(q − 1) maximal subgroups, where q is the smallest prime divisor of n.


Author(s):  
Abraham Love Prins

The Chevalley–Dickson simple group G24 of Lie type G2 over the Galois field GF4 and of order 251596800=212.33.52.7.13 has a class of maximal subgroups of the form 24+6:A5×3, where 24+6 is a special 2-group with center Z24+6=24. Since 24 is normal in 24+6:A5×3, the group 24+6:A5×3 can be constructed as a nonsplit extension group of the form G¯=24·26:A5×3. Two inertia factor groups, H1=26:A5×3 and H2=26:6×2, are obtained if G¯ acts on 24. In this paper, the author presents a method to compute all projective character tables of H2. These tables become very useful if one wants to construct the ordinary character table of G¯ by means of Fischer–Clifford theory. The method presented here is very effective to compute the irreducible projective character tables of a finite soluble group of manageable size.


1989 ◽  
Vol s2-40 (2) ◽  
pp. 244-256 ◽  
Author(s):  
R. A. Bryce ◽  
John Cossey

Sign in / Sign up

Export Citation Format

Share Document