Effects and mode of action of some plant extracts on certain plant parasitic nematodes

1993 ◽  
Vol 66 (2) ◽  
pp. 32-36 ◽  
Author(s):  
A. M. Korayem ◽  
S. A. Hasabo ◽  
H. H. Ameen
EDIS ◽  
2007 ◽  
Vol 2007 (19) ◽  
Author(s):  
R. Krueger ◽  
K. E. Dover ◽  
Robert McSorley ◽  
K. H. Wang

ENY-056, an 8-page fact sheet by R. Krueger, K. E. Dover, R. McSorley, and K. -H. Wang, introduces homeowners to the problem of root-knot nematodes, the use of marigolds as an allelopathic cover crop for nematode suppression. It describes the mode of action, planting tips, considerations, and frequently asked questions. Includes references and tables showing susceptibility of marigold varieties to root-knot and plant-parasitic nematodes in Florida. Published by the UF Department of Entomology and Nematology, August 2007. ENY-056/NG045: Marigolds (Tagetes spp.) for Nematode Management (ufl.edu)


2020 ◽  
Vol 9 (1) ◽  
pp. 43-49
Author(s):  
Timothy I. Olabiyi ◽  
Samuel O. Akinrinola ◽  
Olajumoke E. Ayanda

Three different plant extracts (Khaya ivorensis, Azadirachta indica and Daniella oleifera) and two Trichoderma species (T. harzianum and T. atroviride), singly and in combination, were assessed on nematode population changes and also in the control of plant parasitic nematodes on tomato under field condition during 2018 and 2019 planting seasons. During each trial, plant parasitic nematodes encountered in the field were Meloidogyne, Pratylenchus, Xiphinema and Helicotylenchus species. The experiment was a randomized complete block design with 4 x 3 factorial scheme and five replications. Factor A being plant extracts (Khaya ivorensis, Azadirachta indica, Daniella oleifera) and control, and factor B being bio-control agents (Trichoderma harzianum, T. atroviride) and control, resulting in 12 treatments. Significant reductions were observed on the population of the plant parasitic nematodes at all treatment levels with neem plant extract, in combination with either T. harzianum or T. atroviride resulted in the greatest significant decrease. Applications of different plant extracts and Trichoderma species, singly and in combination, enhanced the growth and yield of tomato infected with parasitic nematodes.


2021 ◽  
Vol 5 (1) ◽  
pp. 014-016
Author(s):  
Khalil Mohamed S ◽  
Selim Rasha E

The demand on non- fumigant nematicides was strongly increased in the last few years, and this interesting in nematicides are due to farmers are needed for safer pesticides and increasing of the regulatory pressure on many of the traditional nematicides. The control of plant parasitic nematodes with synthetic nematicides is the most widespread and preferred method, but not always effective enough. The most of synthetic nematicides especially non-fumigants are high toxic to non-target organisms. Thus, Novel non-fumigant nematicides were appeared as alternatives. The group of trifluoromethyl contains both fluensulfone and fluopyram which are different in mode of action than traditional nematicides as organophosphate and carbamate. Meanwhile, results indicated that fluensulfone and fluopyram are promising nematicides. These new nematicides are very different from traditional nematicides; they are more selective, less toxic and safer to use.


Parasitology ◽  
2007 ◽  
Vol 134 (12) ◽  
pp. 1831-1838 ◽  
Author(s):  
G. STEPEK ◽  
R. H. C. CURTIS ◽  
B. R. KERRY ◽  
P. R. SHEWRY ◽  
S. J. CLARK ◽  
...  

SUMMARYCysteine proteinases from the fruit and latex of plants, such as papaya, pineapple and fig, have previously been shown to have substantial anthelmintic efficacy, in vitro and in vivo, against a range of animal parasitic nematodes. In this paper, we describe the in vitro effects of these plant extracts against 2 sedentary plant parasitic nematodes of the genera Meloidogyne and Globodera. All the plant extracts examined caused digestion of the cuticle and decreased the activity of the tested nematodes. The specific inhibitor of cysteine proteinases, E-64, blocked this activity completely, indicating that it was essentially mediated by cysteine proteinases. In vitro, plant cysteine proteinases are active against second-stage juveniles of M. incognita and M. javanica, and some cysteine proteinases also affect the second-stage juveniles of Globodera rostochiensis. It is not known yet whether these plant extracts will interfere with, or prevent invasion of, host plants.


EDIS ◽  
2017 ◽  
Vol 2017 (2) ◽  
pp. 8
Author(s):  
Zane Grabau

This 8-page fact sheet written by Zane J. Grabau and published in January 2017 by the UF Department of Entomology and Nematology explains how to diagnose and manage nematode problems in cotton production.­http://edis.ifas.ufl.edu/ng015


Sign in / Sign up

Export Citation Format

Share Document