Visibility and parallelotopes in projective space

1981 ◽  
Vol 16 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Reuven R. Rottenberg
Keyword(s):  
2020 ◽  
Vol 17 (5) ◽  
pp. 744-747
Author(s):  
E. Khastyan ◽  
H. Shmavonyan

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Jacob L. Bourjaily ◽  
Andrew J. McLeod ◽  
Cristian Vergu ◽  
Matthias Volk ◽  
Matt von Hippel ◽  
...  

2003 ◽  
Vol 10 (1) ◽  
pp. 37-43
Author(s):  
E. Ballico

Abstract We consider the vanishing problem for higher cohomology groups on certain infinite-dimensional complex spaces: good branched coverings of suitable projective spaces and subvarieties with a finite free resolution in a projective space P(V ) (e.g. complete intersections or cones over finitedimensional projective spaces). In the former case we obtain the vanishing result for H 1. In the latter case the corresponding results are only conditional for sheaf cohomology because we do not have the corresponding vanishing theorem for P(V ).


2012 ◽  
Vol 275 (1-2) ◽  
pp. 109-125 ◽  
Author(s):  
Jun-Muk Hwang ◽  
Hosung Kim

2002 ◽  
Vol 66 (3) ◽  
pp. 465-475 ◽  
Author(s):  
J. Bolton ◽  
C. Scharlach ◽  
L. Vrancken

In a previous paper it was shown how to associate with a Lagrangian submanifold satisfying Chen's equality in 3-dimensional complex projective space, a minimal surface in the 5-sphere with ellipse of curvature a circle. In this paper we focus on the reverse construction.


2000 ◽  
Vol 218 (1-3) ◽  
pp. 25-31 ◽  
Author(s):  
Rossella Di Monte ◽  
Osvaldo Ferri ◽  
Stefania Ferri
Keyword(s):  

2011 ◽  
Vol 85 (1) ◽  
pp. 19-25
Author(s):  
YIN CHEN

AbstractLet Fq be a finite field with q elements, V an n-dimensional vector space over Fq and 𝒱 the projective space associated to V. Let G≤GLn(Fq) be a classical group and PG be the corresponding projective group. In this note we prove that if Fq (V )G is purely transcendental over Fq with homogeneous polynomial generators, then Fq (𝒱)PG is also purely transcendental over Fq. We compute explicitly the generators of Fq (𝒱)PG when G is the symplectic, unitary or orthogonal group.


2011 ◽  
Vol 22 (04) ◽  
pp. 515-534 ◽  
Author(s):  
IUSTIN COANDĂ

We are concerned with the problem of the stability of the syzygy bundles associated to base-point-free vector spaces of forms of the same degree d on the projective space of dimension n. We deduce directly, from M. Green's vanishing theorem for Koszul cohomology, that any such bundle is stable if its rank is sufficiently high. With a similar argument, we prove the semistability of a certain syzygy bundle on a general complete intersection of hypersurfaces of degree d in the projective space. This answers a question of H. Flenner [Comment. Math. Helv.59 (1984) 635–650]. We then give an elementary proof of H. Brenner's criterion of stability for monomial syzygy bundles, avoiding the use of Klyachko's results on toric vector bundles. We finally prove the existence of stable syzygy bundles defined by monomials of the same degree d, of any possible rank, for n at least 3. This extends the similar result proved, for n = 2, by L. Costa, P. Macias Marques and R. M. Miro-Roig [J. Pure Appl. Algebra214 (2010) 1241–1262]. The extension to the case n at least 3 has been also, independently, obtained by P. Macias Marques in his thesis [arXiv:0909.4646/math.AG (2009)].


Sign in / Sign up

Export Citation Format

Share Document