On the stability of semi-implicit methods for ordinary differential equations

1982 ◽  
Vol 22 (2) ◽  
pp. 211-232 ◽  
Author(s):  
E. Hairer ◽  
G. Bader ◽  
Ch. Lubich
2020 ◽  
Vol 13 (06) ◽  
pp. 2050051
Author(s):  
Zhinan Xia ◽  
Qianlian Wu ◽  
Dingjiang Wang

In this paper, we establish some criteria for the stability of trivial solution of population growth models with impulsive perturbations. The working tools are based on the theory of generalized ordinary differential equations. Here, the conditions concerning the functions are more general than the classical ones.


1968 ◽  
Vol 20 ◽  
pp. 720-726
Author(s):  
T. G. Hallam ◽  
V. Komkov

The stability of the solutions of an ordinary differential equation will be discussed here. The purpose of this note is to compare the stability results which are valid with respect to a compact set and the stability results valid with respect to an unbounded set. The stability of sets is a generalization of stability in the sense of Liapunov and has been discussed by LaSalle (5; 6), LaSalle and Lefschetz (7, p. 58), and Yoshizawa (8; 9; 10).


1972 ◽  
Vol 47 ◽  
pp. 111-144 ◽  
Author(s):  
Yoshio Miyahara

The stability of the systems given by ordinary differential equations or functional-differential equations has been studied by many mathematicians. The most powerful tool in this field seems to be the Liapunov’s second method (see, for example [6]).


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lee Ken Yap ◽  
Fudziah Ismail ◽  
Norazak Senu

The block hybrid collocation method with two off-step points is proposed for the direct solution of general third order ordinary differential equations. Both the main and additional methods are derived via interpolation and collocation of the basic polynomial. These methods are applied in block form to provide the approximation at five points concurrently. The stability properties of the block method are investigated. Some numerical examples are tested to illustrate the efficiency of the method. The block hybrid collocation method is also implemented to solve the nonlinear Genesio equation and the problem in thin film flow.


2019 ◽  
Vol 20 (9) ◽  
pp. 542-549 ◽  
Author(s):  
S. G. Bulanov

The approach to the analysis of Lyapunov systems stability of linear ordinary differential equations based on multiplicative transformations of difference schemes of numerical integration is presented. As a result of transformations, the stability criteria in the form of necessary and sufficient conditions are formed. The criteria are invariant with respect to the right side of the system and do not require its transformation with respect to the difference scheme, the length of the gap and the step of the solution. A distinctive feature of the criteria is that they do not use the methods of the qualitative theory of differential equations. In particular, for the case of systems with a constant matrix of the coefficients it is not necessary to construct a characteristic polynomial and estimate the values of the characteristic numbers. When analyzing the system stability with variable matrix coefficients, it is not necessary to calculate the characteristic indicators. The varieties of criteria in an additive form are obtained, the stability analysis based on them being equivalent to the stability assessment based on the criteria in a multiplicative form. Under the conditions of a linear system stability (asymptotic stability) of differential equations, the criteria of the systems stability (asymptotic stability) of linear differential equations with a nonlinear additive are obtained. For the systems of nonlinear ordinary differential equations the scheme of stability analysis based on linearization is presented, which is directly related to the solution under study. The scheme is constructed under the assumption that the solution stability of the system of a general form is equivalent to the stability of the linearized system in a sufficiently small neighborhood of the perturbation of the initial data. The matrix form of the criteria allows implementing them in the form of a cyclic program. The computer analysis is performed in real time and allows coming to an unambiguous conclusion about the nature of the system stability under study. On the basis of a numerical experiment, the acceptable range of the step variation of the difference method and the interval length of the difference solution within the boundaries of the reliability of the stability analysis is established. The approach based on the computer analysis of the systems stability of linear differential equations is rendered. Computer testing has shown the feasibility of using this approach in practice.


2011 ◽  
Vol 16 (1) ◽  
pp. 82-96 ◽  
Author(s):  
M. Braś

We derive suffcient conditions which guarantee that the stability polynomial of Nordsieck method for ordinary differential equations has only two nonzero roots. Examples of such methods up to order four are presented which are A-and L-stable. These examples were obtained by computer search using the Schurcriterion applied to the quadratic factor of the resulting stability polynomials.


Sign in / Sign up

Export Citation Format

Share Document