The Analysis of the Systems Stability of Linear Differential Equations Based on the Transformation of Difference Schemes

2019 ◽  
Vol 20 (9) ◽  
pp. 542-549 ◽  
Author(s):  
S. G. Bulanov

The approach to the analysis of Lyapunov systems stability of linear ordinary differential equations based on multiplicative transformations of difference schemes of numerical integration is presented. As a result of transformations, the stability criteria in the form of necessary and sufficient conditions are formed. The criteria are invariant with respect to the right side of the system and do not require its transformation with respect to the difference scheme, the length of the gap and the step of the solution. A distinctive feature of the criteria is that they do not use the methods of the qualitative theory of differential equations. In particular, for the case of systems with a constant matrix of the coefficients it is not necessary to construct a characteristic polynomial and estimate the values of the characteristic numbers. When analyzing the system stability with variable matrix coefficients, it is not necessary to calculate the characteristic indicators. The varieties of criteria in an additive form are obtained, the stability analysis based on them being equivalent to the stability assessment based on the criteria in a multiplicative form. Under the conditions of a linear system stability (asymptotic stability) of differential equations, the criteria of the systems stability (asymptotic stability) of linear differential equations with a nonlinear additive are obtained. For the systems of nonlinear ordinary differential equations the scheme of stability analysis based on linearization is presented, which is directly related to the solution under study. The scheme is constructed under the assumption that the solution stability of the system of a general form is equivalent to the stability of the linearized system in a sufficiently small neighborhood of the perturbation of the initial data. The matrix form of the criteria allows implementing them in the form of a cyclic program. The computer analysis is performed in real time and allows coming to an unambiguous conclusion about the nature of the system stability under study. On the basis of a numerical experiment, the acceptable range of the step variation of the difference method and the interval length of the difference solution within the boundaries of the reliability of the stability analysis is established. The approach based on the computer analysis of the systems stability of linear differential equations is rendered. Computer testing has shown the feasibility of using this approach in practice.

Author(s):  
S. R. Grace

AbstractNew oscillation criteria are given for second order nonlinear ordinary differential equations with alternating coefficients. The results involve a condition obtained by Kamenev for linear differential equations. The obtained criterion for superlinear differential equations is a complement of the work established by Kwong and Wong, and Philos, for sublinear differential equations and by Yan for linear differential equations.


1988 ◽  
Vol 11 (1) ◽  
pp. 143-165 ◽  
Author(s):  
Vladimir Schuchman

This paper deals with the behavior of solutions of ordinary differential equations in a Hilbert Space. Under certain conditions, we obtain lower estimates or upper estimates (or both) for the norm of solutions of two kinds of equations. We also obtain results about the uniqueness and the quasi-uniqueness of the Cauchy problems of these equations. A method similar to that of Agmon-Nirenberg is used to study the uniqueness of the Cauchy problem for the non-degenerate linear case.


Sign in / Sign up

Export Citation Format

Share Document