On the metric theory of euclidean space curves I

1973 ◽  
Vol 3 (3-4) ◽  
pp. 319-337 ◽  
Author(s):  
J. Szenthe
Keyword(s):  
2019 ◽  
Vol 150 (1) ◽  
pp. 497-516 ◽  
Author(s):  
Shun'ichi Honda ◽  
Masatomo Takahashi

AbstractWe consider a smooth curve with singular points in the Euclidean space. As a smooth curve with singular points, we have introduced a framed curve or a framed immersion. A framed immersion is a smooth curve with a moving frame and the pair is an immersion. We define an evolute and a focal surface of a framed immersion in the Euclidean space. The evolutes and focal surfaces of framed immersions are generalizations of each object of regular space curves. We give relationships between singularities of the evolutes and of the focal surfaces. Moreover, we consider properties of the evolutes, focal surfaces and repeated evolutes.


Filomat ◽  
2019 ◽  
Vol 33 (15) ◽  
pp. 4951-4966
Author(s):  
Sharief Deshmukh ◽  
Azeb Alghanemi ◽  
Rida Farouki

The relationships between certain families of special curves, including the general helices, slant helices, rectifying curves, Salkowski curves, spherical curves, and centrodes, are analyzed. First, characterizations of proper slant helices and Salkowski curves are developed, and it is shown that, for any given proper slant helix with principal normal n, one may associate a unique general helix whose binormal b coincides with n. It is also shown that centrodes of Salkowski curves are proper slant helices. Moreover, with each unit-speed non-helical Frenet curve in the Euclidean space E3, one may associate a unique circular helix, and characterizations of the slant helices, rectifying curves, Salkowski curves, and spherical curves are presented in terms of their associated circular helices. Finally, these families of special curves are studied in the context of general polynomial/rational parameterizations, and it is observed that several of them are intimately related to the families of polynomial/rational Pythagorean-hodograph curves.


2016 ◽  
Vol 16 (3) ◽  
Author(s):  
Shun’ichi Honda ◽  
Masatomo Takahashi

AbstractA framed curve in the Euclidean space is a curve with a moving frame. It is a generalization not only of regular curves with linear independent condition, but also of Legendre curves in the unit tangent bundle. We define smooth functions for a framed curve, called the curvature of the framed curve, similarly to the curvature of a regular curve and of a Legendre curve. Framed curves may have singularities. The curvature of the framed curve is quite useful to analyse the framed curves and their singularities. In fact, we give the existence and the uniqueness for the framed curves by using their curvature. As applications, we consider a contact between framed curves, and give a relationship between projections of framed space curves and Legendre curves.


2018 ◽  
Vol 2020 (9) ◽  
pp. 2698-2768 ◽  
Author(s):  
Gil Bor ◽  
Mark Levi ◽  
Ron Perline ◽  
Sergei Tabachnikov

Abstract We study a simple model of bicycle motion: a segment of fixed length in multi-dimensional Euclidean space, moving so that the velocity of the rear end is always aligned with the segment. If the front track is prescribed, the trajectory of the rear wheel is uniquely determined via a certain first order differential equation—the bicycle equation. The same model, in dimension two, describes another mechanical device, the hatchet planimeter. Here is a sampler of our results. We express the linearized flow of the bicycle equation in terms of the geometry of the rear track; in dimension three, for closed front and rear tracks, this is a version of the Berry phase formula. We show that in all dimensions a sufficiently long bicycle also serves as a planimeter: it measures, approximately, the area bivector defined by the closed front track. We prove that the bicycle equation also describes rolling, without slipping and twisting, of hyperbolic space along Euclidean space. We relate the bicycle problem with two completely integrable systems: the Ablowitz, Kaup, Newell, and Segur (AKNS) system and the vortex filament equation. We show that “bicycle correspondence” of space curves (front tracks sharing a common back track) is a special case of a Darboux transformation associated with the AKNS system. We show that the filament hierarchy, encoded as a single generating equation, describes a three-dimensional bike of imaginary length. We show that a series of examples of “ambiguous” closed bicycle curves (front tracks admitting self bicycle correspondence), found recently F. Wegner, are buckled rings, or solitons of the planar filament equation. As a case study, we give a detailed analysis of such curves, arising from bicycle correspondence with multiply traversed circles.


2020 ◽  
Vol 55 ◽  
Author(s):  
Kazimieras Navickis

Oosculating sphere have been studied in classical differential geometry [1]. In this article the osculating surfaces of higher order of space curves on surfaces in Euclidean space is considered. We study the intrinsic differential geometry of curves  on surfaces by analyzing their contact with surfaces of higher order.


Author(s):  
Dusa McDuff ◽  
Dietmar Salamon

This chapter returns to the problems which were formulated in Chapter 1, namely the Weinstein conjecture, the nonsqueezing theorem, and symplectic rigidity. These questions are all related to the existence and properties of symplectic capacities. The chapter begins by discussing some of the consequences which follow from the existence of capacities. In particular, it establishes symplectic rigidity and discusses the relation between capacities and the Hofer metric on the group of Hamiltonian symplectomorphisms. The chapter then introduces the Hofer–Zehnder capacity, and shows that its existence gives rise to a proof of the Weinstein conjecture for hypersurfaces of Euclidean space. The last section contains a proof that the Hofer–Zehnder capacity satisfies the required axioms. This proof translates the Hofer–Zehnder variational argument into the setting of (finite-dimensional) generating functions.


Author(s):  
Lawrence H. Starkey

For two centuries Kant's first Critique has nourished various turns against transcendent metaphysics and realism. Kant was scandalized by reason's impotence in confronting infinity (or finitude) as seen in the divisibility of particles and in spatial extension and time. Therefore, he had to regard the latter as subjective and reality as imponderable. In what follows, I review various efforts to rationalize Kant's antinomies-efforts that could only flounder before the rise of Einstein's general relativity and Hawking's blackhole cosmology. Both have undercut the entire Kantian tradition by spawning highly probable theories for suppressing infinities and actually resolving these perplexities on a purely physical basis by positing curvatures of space and even of time that make them reëntrant to themselves. Heavily documented from primary sources in physics, this paper displays time’s curvature as its slowing down near very massive bodies and even freezing in a black hole from which it can reëmerge on the far side, where a new universe can open up. I argue that space curves into a double Möbius strip until it loses one dimension in exchange for another in the twin universe. It shows how 10-dimensional GUTs and the triple Universe, time/charge/parity conservation, and strange and bottom particle families and antiparticle universes, all fit together.


1992 ◽  
Vol 07 (23) ◽  
pp. 2077-2085 ◽  
Author(s):  
A. D. POPOV

The anti-self-duality equations for gauge fields in d = 4 and a generalization of these equations to dimension d = 4n are considered. For gauge fields with values in an arbitrary semisimple Lie algebra [Formula: see text] we introduce the ansatz which reduces the anti-self-duality equations in the Euclidean space ℝ4n to a system of equations breaking up into the well known Nahm's equations and some linear equations for scalar field φ.


Sign in / Sign up

Export Citation Format

Share Document