Back-reaction of the Kerr black hole. A thermodynamical approach

1996 ◽  
Vol 28 (10) ◽  
pp. 1171-1175 ◽  
Author(s):  
Li-Xin Li
Open Physics ◽  
2012 ◽  
Vol 10 (4) ◽  
Author(s):  
Peter Komorowski ◽  
Sree Valluri ◽  
Martin Houde

AbstractIn an extreme mass-ratio binary black hole system, a non-equatorial orbit will list (i.e. increase its angle of inclination, i) as it evolves in Kerr spacetime. The abutment, a set of evolving, near-polar, retrograde orbits, for which the instantaneous Carter constant (Q) is at its maximum value (Q X) for given values of latus rectum (l̃) and eccentricity (e), has been introduced as a laboratory in which the consistency of dQ/dt with corresponding evolution equations for d l̃/dt and de/dt might be tested independently of a specific radiation back-reaction model. To demonstrate the use of the abutment as such a laboratory, a derivation of dQ/dt, based only on published formulae for d l̃/dt and de/dt, was performed for elliptical orbits on the abutment. The resulting expression for dQ/dt matched the published result to the second order in e. We believe the abutment is a potentially useful tool for improving the accuracy of evolution equations to higher orders of e and l̃−.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Alejandro Aguayo-Ortiz ◽  
Olivier Sarbach ◽  
Emilio Tejeda
Keyword(s):  

1993 ◽  
Vol 47 (4) ◽  
pp. 1465-1470 ◽  
Author(s):  
David Hochberg ◽  
Thomas W. Kephart
Keyword(s):  

2018 ◽  
Vol 27 (03) ◽  
pp. 1850023 ◽  
Author(s):  
Pratik Tarafdar ◽  
Tapas K. Das

Linear perturbation of general relativistic accretion of low angular momentum hydrodynamic fluid onto a Kerr black hole leads to the formation of curved acoustic geometry embedded within the background flow. Characteristic features of such sonic geometry depend on the black hole spin. Such dependence can be probed by studying the correlation of the acoustic surface gravity [Formula: see text] with the Kerr parameter [Formula: see text]. The [Formula: see text]–[Formula: see text] relationship further gets influenced by the geometric configuration of the accretion flow structure. In this work, such influence has been studied for multitransonic shocked accretion where linear perturbation of general relativistic flow profile leads to the formation of two analogue black hole-type horizons formed at the sonic points and one analogue white hole-type horizon which is formed at the shock location producing divergent acoustic surface gravity. Dependence of the [Formula: see text]–[Formula: see text] relationship on the geometric configuration has also been studied for monotransonic accretion, over the entire span of the Kerr parameter including retrograde flow. For accreting astrophysical black holes, the present work thus investigates how the salient features of the embedded relativistic sonic geometry may be determined not only by the background spacetime, but also by the flow configuration of the embedding matter.


2005 ◽  
Vol 44 (6) ◽  
pp. 1037-1040
Author(s):  
Ren Zhao ◽  
Sheng-Li Zhang

Sign in / Sign up

Export Citation Format

Share Document