A finite element non-linear stability analysis for journal bearings

Meccanica ◽  
1980 ◽  
Vol 15 (1) ◽  
pp. 47-53
Author(s):  
G. Manfrida ◽  
F. Martelli
2019 ◽  
Vol 71 (1) ◽  
pp. 31-39
Author(s):  
Subrata Das ◽  
Sisir Kumar Guha

Purpose The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid. Design/methodology/approach The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics. Findings It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value. Practical implications The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications. Originality/value Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.


The combined effect of various parameters of gravity modulation on the onset of ferroconvection is studied for both linear and non-linear stability. The effect of various parameters of ferroconvection is studied for linear stability analysis. The resulting seven-mode generalized Lorenz model obtained in non-linear stability analysis is solved using Runge -Kutta-Felberg 45 method to analyze the heat transfer. Consequently the individual effect of gravity modulation on heat transport has been investigated. Further, the effect of physical parameters on heat transport has been analyzed and depicted graphically. The low-frequency gravity modulation is observed to get an effective influence on the stability of the system. Therefore ferro convection can be advanced or delayed by controlling different governing parameters. It shows that the influence of gravity modulation stabilizes system.


Sign in / Sign up

Export Citation Format

Share Document