Deviation from matthiessen's rule for thermal conductivity of quenched Zn-doped Cd crystals in the temperature range 5–20 K

1993 ◽  
Vol 14 (6) ◽  
pp. 1229-1234 ◽  
Author(s):  
K. Balcerek ◽  
Cz. Marucha ◽  
J. Rafalowicz ◽  
R. Wawryk
2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Yandong Sun ◽  
Yanguang Zhou ◽  
Jian Han ◽  
Wei Liu ◽  
Cewen Nan ◽  
...  

Abstract Dislocations can greatly enhance the figure of merit of thermoelectric materials by prominently reducing thermal conductivity. However, the evolution of phonon modes with different energies when they propagate through a single dislocation is unknown. Here we perform non-equilibrium molecular dynamics simulation to study phonon transport in PbTe crystal with dislocations by excluding boundary scattering and strain coupling effect. The frequency-dependent heat flux, phonon mode analysis, and frequency-dependent phonon mean free paths (MFPs) are presented. The thermal conductivity of PbTe with dislocation density on the order of 1015 m−2 is decreased by 62%. We provide solid evidence of strong localization of phonon modes in dislocation sample. Moreover, by comparing the frequency-dependent phonon MFPs between atomistic modeling and traditional theory, it is found that the conventional theories are inadequate to describe the phonon behavior throughout the full phonon spectrum, and large deviation to the well-known semi-classical Matthiessen’s rule is observed. These results provide insightful guidance for the development of PbTe based thermoelectrics and shed light on new routes for enhancing the performance of existing thermoelectrics by incorporating dislocations.


1972 ◽  
Vol 6 (10) ◽  
pp. 3624-3633 ◽  
Author(s):  
M. C. Karamargin ◽  
C. A. Reynolds ◽  
F. P. Lipschultz ◽  
P. G. Klemens

Cryogenics ◽  
2021 ◽  
pp. 103300
Author(s):  
Yang Biao ◽  
Xi Xiaotong ◽  
Liu Xuming ◽  
Xu Xiafan ◽  
Chen Liubiao ◽  
...  

2009 ◽  
Vol 24 (2) ◽  
pp. 430-435 ◽  
Author(s):  
D. Li ◽  
H.H. Hng ◽  
J. Ma ◽  
X.Y. Qin

The thermoelectric properties of Nb-doped Zn4Sb3 compounds, (Zn1–xNbx)4Sb3 (x = 0, 0.005, and 0.01), were investigated at temperatures ranging from 300 to 685 K. The results showed that by substituting Zn with Nb, the thermal conductivities of all the Nb-doped compounds were lower than that of the pristine β-Zn4Sb3. Among the compounds studied, the lightly substituted (Zn0.995Nb0.005)4Sb3 compound exhibited the best thermoelectric performance due to the improvement in both its electrical resistivity and thermal conductivity. Its figure of merit, ZT, was greater than the undoped Zn4Sb3 compound for the temperature range investigated. In particular, the ZT of (Zn0.995Nb0.005)4Sb3 reached a value of 1.1 at 680 K, which was 69% greater than that of the undoped Zn4Sb3 obtained in this study.


1961 ◽  
Vol 39 (7) ◽  
pp. 1029-1039 ◽  
Author(s):  
M. J. Laubitz

A method is given for exact mathematical analysis of linear heat flow systems used in measuring thermal conductivity at high temperatures. It is shown that a popular version of such a system is very sensitive to the alignment of its components, which seriously limits the temperature range of its satisfactory use.


Sign in / Sign up

Export Citation Format

Share Document