nb doping
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 51)

H-INDEX

27
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Cristina Florentina Chirila ◽  
Viorica Stancu ◽  
Georgia Andra Boni ◽  
Iuliana Pasuk ◽  
Lucian Trupina ◽  
...  

AbstractFe (acceptor) and Nb (donor) doped epitaxial Pb(Zr0.2Ti0.8)O3 (PZT) films were grown on single crystal SrTiO3 substrates and their electric properties were compared to those of un-doped PZT layers deposited in similar conditions. All the films were grown from targets produced from high purity precursor oxides and the doping was in the limit of 1% atomic in both cases. The remnant polarization, the coercive field and the potential barriers at electrode interfaces are different, with lowest values for Fe doping and highest values for Nb doping, with un-doped PZT in between. The dielectric constant is larger in the doped films, while the effective density of charge carriers is of the same order of magnitude. An interesting result was obtained from piezoelectric force microscopy (PFM) investigations. It was found that the as-grown Nb-doped PZT has polarization orientated upward, while the Fe-doped PZT has polarization oriented mostly downward. This difference is explained by the change in the conduction type, thus in the sign of the carriers involved in the compensation of the depolarization field during the growth. In the Nb-doped film the majority carriers are electrons, which tend to accumulate to the growing surface, leaving positively charged ions at the interface with the bottom SrRuO3 electrode, thus favouring an upward orientation of polarization. For Fe-doped film the dominant carriers are holes, thus the sign of charges is opposite at the growing surface and the bottom electrode interface, favouring downward orientation of polarization. These findings open the way to obtain p-n ferroelectric homojunctions and suggest that PFM can be used to identify the type of conduction in PZT upon the dominant direction of polarization in the as-grown films.


APL Materials ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 010701
Author(s):  
Xianhui Rao ◽  
Jie Wang ◽  
Min-An Yang ◽  
Hailei Zhao ◽  
Zhaolin Li

2022 ◽  
Vol 160 ◽  
pp. 110350
Author(s):  
P.V. Karthik Yadav ◽  
B. Ajitha ◽  
Captain M.Anees Ahmed ◽  
Y. Ashok Kumar Reddy ◽  
Vasudeva Reddy Minnam Reddy

2021 ◽  
Vol 11 (1) ◽  
pp. 191-203
Author(s):  
Toyin Shittu ◽  
Mohammednoor Altarawneh

Abstract Catalytic capacity of ceria mainly stems from a facile switch in the Ce oxidation states from +4 to +4 − x. While various experimental and computational studies pinpoint the reduction chemistry of Ce atom through the creation of oxygen vacancies, the analogous process when ceria surface is decorated with cations remains poorly understood. Where such results are available, a synergy between experimental and first principle calculation is scarce. Niobium materials are evolving and their use in catalysis is being widely investigated due to their high surface acidity and thermal and chemical stability. This study aims to report structural and electronic properties of various configurations of mixed Ce–Nb oxides and elaborates on factors that underpin potential catalytic improvements. Evaluations of the samples through X-ray diffraction (XRD), Fourier transform infrared (FTIR), N2-adsorption–desorption, scanning electron microscope (SEM), energy dispersive spectroscope (EDS), and thermogravimetric (TGA) analyses are examined and discussed. First principles density functional theory (DFT) calculations provide structural features of the Ce–Nb solutions at low concentration of Nb via computing atomic charge distribution. Contraction in the lattice parameter after Nb doping was confirmed with both XRD and DFT results. SEM analysis reveals particle growth at the loading of 50 wt%. FTIR results established the Ce–Nb–O bond at 1,100 cm−1 and the TGA analysis confirms the thermal stability of Nb-doped ceria. Tetrahedral O atoms demonstrate an increase in electronegativity and this in turn facilitates catalytic propensity of the material because the O atoms will exhibit higher affinity for adsorbed reactants. Cerium oxide (CeO2) after Nb doping displays a noticeable band gap narrowing, confirming the possible improvement in the catalytic behavior. The 4d states of the Niobium pentoxide (Nb2O5) is found to fill up the 4f states of CeO2 around the Fermi energy level promoting electrons excitation in the CeO2. Reported electronic, structural, and thermal characteristics herein indicate promising catalytic applications of niobium-promoted ceria.


Author(s):  
Makoto Tachibana ◽  
Ahmad Rifqi Muchtar ◽  
Takao Mori

Abstract We report the thermal conductivity (κ) of perovskite Sr1−x(La0.5Na0.5)xTiO3 (0 ≤ x ≤ 1) and the thermoelectric properties of Nb-doped samples for x = 0.1 and 0.2. The κ of the solid solution shows a distinct minimum near the cubic-tetragonal phase boundary at x = 0.2, where the value becomes close to the minimum theoretical κ. Nb doping to x = 0.2 retains the high power factor found in Nb-doped SrTiO3, but also raises the κ to result in a thermoelectric figure of merit of 0.24 at 773 K.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hanjie Yang ◽  
Yang Wang ◽  
Xingli Zou ◽  
Rongxu Bai ◽  
Zecheng Wu ◽  
...  

Wafer-scale synthesis of p-type TMD films is critical for its commercialization in next-generation electro/optoelectronics. In this work, wafer-scale intrinsic n-type WS2 films and in situ Nb-doped p-type WS2 films were synthesized through atomic layer deposition (ALD) on 8-inch α-Al2O3/Si wafers, 2-inch sapphire, and 1 cm2 GaN substrate pieces. The Nb doping concentration was precisely controlled by altering cycle number of Nb precursor and activated by postannealing. WS2 n-FETs and Nb-doped p-FETs with different Nb concentrations have been fabricated using CMOS-compatible processes. X-ray photoelectron spectroscopy, Raman spectroscopy, and Hall measurements confirmed the effective substitutional doping with Nb. The on/off ratio and electron mobility of WS2 n-FET are as high as 105 and 6.85 cm2 V-1 s-1, respectively. In WS2 p-FET with 15-cycle Nb doping, the on/off ratio and hole mobility are 10 and 0.016 cm2 V-1 s-1, respectively. The p-n structure based on n- and p- type WS2 films was proved with a 104 rectifying ratio. The realization of controllable in situ Nb-doped WS2 films paved a way for fabricating wafer-scale complementary WS2 FETs.


2021 ◽  
pp. 139744
Author(s):  
Chen Hou ◽  
Yi-Ran Xing ◽  
Le-Le Yu ◽  
Yong-Heng Si ◽  
Han Lu ◽  
...  

Author(s):  
Dong Li ◽  
Xuebai Zhang ◽  
Yingmin Jin ◽  
Xin Zong ◽  
Yueping Xiong

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jesse S. Ko ◽  
Nam Q. Le ◽  
Danielle R. Schlesinger ◽  
Dajie Zhang ◽  
James K. Johnson ◽  
...  

AbstractElectrochemical advanced oxidative processes (EAOP) are a promising route to destroy recalcitrant organic contaminants such as per- and polyfluoroalkyl substances (PFAS) in drinking water. Central to EAOP are catalysis-induced reactive free radicals for breaking the carbon fluorine bonds in PFAS. Generating these reactive species electrochemically at electrodes provides an advantage over other oxidation processes that rely on chemicals or other harsh conditions. Herein, we report on the performance of niobium (Nb) doped rutile titanium oxide (TiO2) as a novel EAOP catalytic material, combining theoretical modeling with experimental synthesis and characterization. Calculations based on density functional theory are used to predict the overpotential for oxygen evolution at these candidate electrodes, which must be high in order to oxidize PFAS. The results indicate a non-monotonic trend in which Nb doping below 6.25 at.% is expected to reduce performance relative to TiO2, while higher concentrations up to 12.5 at.% lead to increased performance, approaching that of state-of-the-art Magnéli Ti4O7. TiO2 samples were synthesized with Nb doping concentration at 10 at.%, heat treated at temperatures from 800 to 1100 °C, and found to exhibit high oxidative stability and high generation of reactive oxygen free radical species. The capability of Nb-doped TiO2 to destroy two common species of PFAS in challenge water was tested, and moderate reduction by ~ 30% was observed, comparable to that of Ti4O7 using a simple three-electrode configuration. We conclude that Nb-doped TiO2 is a promising alternative EAOP catalytic material with increased activity towards generating reactive oxygen species and warrants further development for electrochemically destroying PFAS contaminants.


Sign in / Sign up

Export Citation Format

Share Document