Effects of Nb doping on thermoelectric properties of Zn4Sb3 at high temperatures

2009 ◽  
Vol 24 (2) ◽  
pp. 430-435 ◽  
Author(s):  
D. Li ◽  
H.H. Hng ◽  
J. Ma ◽  
X.Y. Qin

The thermoelectric properties of Nb-doped Zn4Sb3 compounds, (Zn1–xNbx)4Sb3 (x = 0, 0.005, and 0.01), were investigated at temperatures ranging from 300 to 685 K. The results showed that by substituting Zn with Nb, the thermal conductivities of all the Nb-doped compounds were lower than that of the pristine β-Zn4Sb3. Among the compounds studied, the lightly substituted (Zn0.995Nb0.005)4Sb3 compound exhibited the best thermoelectric performance due to the improvement in both its electrical resistivity and thermal conductivity. Its figure of merit, ZT, was greater than the undoped Zn4Sb3 compound for the temperature range investigated. In particular, the ZT of (Zn0.995Nb0.005)4Sb3 reached a value of 1.1 at 680 K, which was 69% greater than that of the undoped Zn4Sb3 obtained in this study.

2001 ◽  
Vol 691 ◽  
Author(s):  
Theodora Kyratsi ◽  
Jeffrey S. Dyck ◽  
Wei Chen ◽  
Duck-Young Chung ◽  
Ctirad Uher ◽  
...  

ABSTRACTOur efforts to improve the thermoelectric properties of β-K2Bi8Se13, led to systematic studies of solid solutions of the type β-K2Bi8−xSbxSe13. The charge transport properties and thermal conductivities were studied for selected members of the series. Lattice thermal conductivity decreases due to the mass fluctuation generated in the lattice by the mixed occupation of Sb and Bi atoms. Se excess as a dopant was found to increase the figure-of merit of the solid solutions.


2021 ◽  
Vol 5 (1) ◽  
pp. 324-332
Author(s):  
J. M. Li ◽  
H. W. Ming ◽  
B. L. Zhang ◽  
C. J. Song ◽  
L. Wang ◽  
...  

Cu3SbSe4-Based materials were fabricated through Sn-doping and AgSb0.98Ge0.02Se2 incorporation and their thermoelectric properties were investigated in the temperature range from 300 K to 675 K.


2008 ◽  
Vol 368-372 ◽  
pp. 547-549
Author(s):  
Jun Jiang ◽  
Ya Li Li ◽  
Gao Jie Xu ◽  
Ping Cui ◽  
Li Dong Chen

In the present study, n-type (Bi2Se3)x(Bi2Te3)1-x crystals with various chemical compositions were fabricated by the zone melting method. Thermoelectric properties, including Seebeck coefficient (α), electrical conductivity (σ) and thermal conductivity (κ), were measured in the temperature range of 300-500 K. The influence of the variations of Bi2Te3 and Bi2Se3 content on thermoelectric properties was studied. The increase of Bi2Se3 content (x) caused an increase in carrier concentration and thus an increase of σ and a decrease of α. The maximum figure of merit (ZT = α2σT/κ) of 0.87 was obtained at about 325 K for the composition of 93%Bi2Te3-7%Bi2Se3 with doping TeI4.


2000 ◽  
Vol 626 ◽  
Author(s):  
Jun-ichi Tani ◽  
Hiroyasu Kido

ABSTRACTIn order to investigate the thermoelectric properties of Re-doped β-FeSi2 (Fe1-xRexSi2), Ir-doped β-FeSi2 (Fe1-xIrxSi2), and Pt-doped β-FeSi2 (Fe1-xPtxSi2), the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of these samples have been measured in the temperature range between 300 and 1150 K. Fe1-xRexSi2 is p-type, while Fe1-xIrxSi2 and Fe1-xPt xSi2 are n-type over the measured temperature range. The solubility limits of dopant are estimated to be 0.2at% for Fe1-xRexSi2, 0.5at% for Fe1-xIrxSi2, and 1.9at% for Fe1-xPtxSi2. A maximum ZT value of 0.14 was obtained for Fe1-xPt xSi2 (x=0.03) at the temperature 847 K.


2018 ◽  
Vol 773 ◽  
pp. 145-151
Author(s):  
Min Soo Park ◽  
Gook Hyun Ha ◽  
Hye Young Koo ◽  
Yong Ho Park

The Bi–Te thermoelectric system shows an excellent figure of merit (ZT) near room temperature. Research on increasing the ZT value for n‑type Bi–Te is imperative because the thermoelectric properties of this compound are inferior to those of the p-type material. For this purpose, n-type Bi2Te3-ySey powders with various amounts of Se dopant (0.3 ≤ y ≤ 0.6) were synthesized by a vacuum melting-grinding process to improve the physical properties. The ZT value of the sintered bodies was investigated in the temperature range of 298–423 K with regard to the electrical and thermal characteristics. As the Se content increased, the electrical conductivity decreased owing to a reduction in the carrier concentration, which improved the overall value of ZT. The thermal conductivity clearly decreased as the Se content increased in the temperature range of 298–373 K due to increased alloy scattering, as well as a reduction in the lattice thermal conductivity caused by crystal grain boundary scattering. At room temperature, Bi2Te2.7Se0.3 (y = 0.3) exhibited the highest ZT of 0.85. At increased temperatures, the ZT value was highest for Bi2Te2.55Se0.45 (y = 0.45), indicating that the optimal effect of the Se dopants varies depending on the temperature range.


2006 ◽  
Vol 21 (2) ◽  
pp. 480-483 ◽  
Author(s):  
D. Li ◽  
X.Y. Qin ◽  
J. Zhang

The thermoelectric properties of Gd intercalated compounds GdxTiS2 have been investigated at the temperatures from 5 to 310 K. The results indicate that Gd intercalation into TiS2 leads to substantial decrease of both its electrical resistivity and its lattice thermal conductivity κL (κL is lowered by 20% and 46% at 300 K for x = 0.025 and 0.05, respectively). Specially, as compared to the pristine TiS2 the figure of merit ZT of the intercalated compound GdxTiS2 has been improved at all temperatures investigated, and specifically, the ZT value of Gd0.05TiS2 at 300 K is about three times as large as that of TiS2.


2010 ◽  
Vol 650 ◽  
pp. 137-141
Author(s):  
Qing Sen Meng ◽  
Wen Hao Fan ◽  
L.Q. Wang ◽  
L.Z. Ding

Iron disilicide (-FeSi2, and -FeSi2+Cu0.1wt%) were prepared by a field-activated pressure assisted synthesis(FAPAS) method from elemental powders and the thermoelectric properties were investigated. The average grain size of these products is about 0.3m. The thermal conductivity of these materials is 3-4wm-1K-1in the temperature range 300-725K. These products’ figure of merit is 28.50×10-4 in the temperature range 330-450K. The additions of Cu promote the phase transformation of -Fe2Si5 + -FeSi → β-FeSi2 and shorten the annealing time. It is proved that FAPAS is a benign and rapid process for sintering of -FeSi2 thermoelectric materials.


1947 ◽  
Vol 25a (6) ◽  
pp. 357-374 ◽  
Author(s):  
L. D. Armstrong ◽  
T. M. Dauphinee

An apparatus for measuring the thermal conductivity of metals in the temperature range 0° to 800 °C. is described. The method utilizes unidirectional heat flow in a cylindrical sample in a vacuum. The advantages of the method are outlined and a comprehensive analysis of possible errors in the measurements is included. Measurements on Armco iron indicate that results with an absolute error of less than 2% may be obtained. The results of measurements on a sample of Armco iron gave thermal conductivities of 0.1819 c.g.s units at 0 °C. and 0.0698 c.g.s. units at 800 °C. A change in slope of the thermal conductivity–temperature curve was found at a temperature of approximately 375 °C., and is tentatively attributed to the presence of 0.03% nickel impurity.


2004 ◽  
Vol 449-452 ◽  
pp. 905-908 ◽  
Author(s):  
Dong Choul Cho ◽  
Cheol Ho Lim ◽  
D.M. Lee ◽  
Seung Y. Shin ◽  
Chung Hyo Lee

The n-type thermoelectric materials of Bi2Te2.7Se0.3 doped with SbI3 were prepared by spark plasma sintering technique. The powders were ball-milled in an argon and air atmosphere. Then, powders were reduced in H2 atmosphere. Effects of oxygen content on the thermoelectric properties of Bi2Te2.7Se0.3 compounds have been investigated. Seebeck coefficient, electrical resistivity and thermal conductivity of the sintered compound were measured at room temperature. It was found that the effect of atmosphere during the powder production was remarkable and thermoelectric properties of sintered compound were remarkably improved by H2 reduction of starting powder. The obtained maximum figure of merit was 2.4 x 10-3/K.


2003 ◽  
Vol 793 ◽  
Author(s):  
Matthieu Puyet ◽  
Bertrand Lenoir ◽  
Anne Dauscher ◽  
Hubert Scherrer ◽  
Moukrane Dehmas ◽  
...  

ABSTRACTThe transport properties of the partially filled CaxCo4-yNiySb12 skutterudite compounds have been investigated in the 300 – 800 K temperature range. We underline the positive influence of the Ni substitution on the electrical resistivity and thermopower while the thermal properties – thermal conductivity – remains almost unaffected. These results suggest again a beneficial effect of Ni atoms on the dimensionless figure of merit in CoSb3 based compounds.


Sign in / Sign up

Export Citation Format

Share Document