Finite element analysis of temperature field with phase transformation and non-linear surface heat-transfer coefficient during quenching

1998 ◽  
Vol 19 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Cheng Heming ◽  
Zhang Shuhong ◽  
Wang Honggang ◽  
Li Jianyun
Author(s):  
Z M Hu ◽  
J W Brooks ◽  
T A Dean

An investigation of die temperature changes and the heat transfer coefficient during hot forging of titanium alloy has been carried out using experiments and a thermal-plastic coupled finite element analysis. Hot Ti-6A1–4V rings were forged between two heated flat dies made of Inconel alloy IN718. The bottom die was instrumented with high-response thermocouples on its surface and subsurface. The recorded temperatures were analysed and used to determine the interface heat transfer coefficient between the die and the workpiece in conjunction with the thermal-plastic coupled finite element analysis using a reverse algorithm. The coefficients determined were then used in a finite element model for the analysis of the upsetting process and the results produced were in good agreement with the experimental data.


2011 ◽  
Vol 55-57 ◽  
pp. 1142-1147
Author(s):  
Bao Dong Shao ◽  
He Ming Cheng ◽  
Jian Yun Li ◽  
Zi Liang Li ◽  
Li Jun Hou ◽  
...  

During mixture of Nitrogen and spray water ejecting quenching under normal pressure and high velocity, the liquid film that is formed on the surface of specimen to reduce the heat transfer between specimen and quenching media is removed on the one hand; on the other hand, the heat transfer performance of the mixture exceeds that of pure Nitrogen. Because the surface heat transfer coefficient is difficult to measure, according the cooling curve of surface and centre of specimen measured experimentally, the law of surface heat transfer coefficient and specimen temperature is calculated by nonlinear estimate methods and finite difference method based on inverse heat transfer method. The results show that the cooling performance of mixture of Nitrogen and spray water is as well as that of water or oil. During quenching, the surface heat transfer coefficient increases rapidly at begin, and at temperature of 170 °C, the surface heat transfer coefficient decreases. During martensite phase transformation, the latent heat is used to increase drive force of phase transformation and to overcome resistance of phase transformation, thus the martensite phase transformation can fulfill.


2013 ◽  
Vol 275-277 ◽  
pp. 83-86
Author(s):  
Chun Lin Zhang ◽  
Nian Su Hu ◽  
Wen Yang ◽  
Jian Mei Wang ◽  
Min Li ◽  
...  

With the development of the power grid, the proportion of large capacity unit is increasing rapidly. It requires a more in-depth study on the reliability of the unit, especially for the unit adjusting the peak. This paper concerned on the research of the surface heat transfer coefficient, which is the key factor affect the precision in thermal stress analysis. The surface heat transfer coefficient is obtained via the numerical calculation for the steam’s flow state and the transient heat transfer between rotor. This paper mainly describes the steam’s flow state and the transient heat transfer with the steam seal, and the results show that the direct numerical calculation is resultful in this subject.


Sign in / Sign up

Export Citation Format

Share Document