scholarly journals Finite Element Analysis about Compressive Strength and Heat Transfer Coefficient of New Composite Insulation Block

Author(s):  
Zhixin Yue ◽  
Baishou Li
Author(s):  
Z M Hu ◽  
J W Brooks ◽  
T A Dean

An investigation of die temperature changes and the heat transfer coefficient during hot forging of titanium alloy has been carried out using experiments and a thermal-plastic coupled finite element analysis. Hot Ti-6A1–4V rings were forged between two heated flat dies made of Inconel alloy IN718. The bottom die was instrumented with high-response thermocouples on its surface and subsurface. The recorded temperatures were analysed and used to determine the interface heat transfer coefficient between the die and the workpiece in conjunction with the thermal-plastic coupled finite element analysis using a reverse algorithm. The coefficients determined were then used in a finite element model for the analysis of the upsetting process and the results produced were in good agreement with the experimental data.


1989 ◽  
Vol 111 (4) ◽  
pp. 337-344 ◽  
Author(s):  
Yong-Taek Im

An investigation of heat transfer and deformation during hot upsetting has been performed by comparing results of finite element analysis with experimental data obtained from the literature. The effect of the interface heat transfer coefficient for three orders of magnitude has been evaluated in the hot upsetting of AISI 1042 carbon steel, AISI 304 stainless steel, and OFHC copper. The finite element studies have shown to be a practical method to obtain information on the interface heat transfer coefficient, a value that is difficult to determine experimentally. The results for heat transfer in the billets and dies considering transfer time, resting time, and deformation are presented.


1998 ◽  
Vol 26 (1) ◽  
pp. 51-62
Author(s):  
A. L. A. Costa ◽  
M. Natalini ◽  
M. F. Inglese ◽  
O. A. M. Xavier

Abstract Because the structural integrity of brake systems and tires can be related to the temperature, this work proposes a transient heat transfer finite element analysis (FEA) model to study the overheating in drum brake systems used in trucks and urban buses. To understand the mechanics of overheating, some constructive variants have been modeled regarding the assemblage: brake, rims, and tires. The model simultaneously studies the thermal energy generated by brakes and tires and how the heat is transferred and dissipated by conduction, convection, and radiation. The simulated FEA data and the experimental temperature profiles measured with thermocouples have been compared giving good correlation.


2014 ◽  
Vol 1063 ◽  
pp. 334-338 ◽  
Author(s):  
Tzu Hao Hung ◽  
Heng Kuang Tsai ◽  
Fuh Kuo Chen ◽  
Ping Kun Lee

Due to the complexity of hot stamping mechanism, including the coupling of material formability, thermal interaction and metallurgical microstructure, it makes the process design more difficult even with the aid of the finite element analysis. In the present study, the experimental platforms were developed to measure and derive the friction and heat transfer coefficients, respectively. The experiments at various elevated temperatures and contact pressures were conducted and the friction coefficients and heat transfer coefficients were obtained. A finite element model was also established with the experimental data and the material properties of the boron steel calculated from the JMatPro software. The finite element simulations for the hot stamping forming of an automotive door beam, including transportation analysis, hot forming analysis and die quenching analysis were then performed to examine the forming properties of the door beam. The validation of the finite element results by the production part confirms the efficiency and accuracy of the developed experimental platforms and the finite element analysis for the process design of hot stamping.


Author(s):  
Guochang Li ◽  
Zhichang Zhan ◽  
Zhijian Yang ◽  
Yu Yang

The concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load were investigated by the finite element analysis software ABAQUS. The working mechanism of the composite columns which is under bi-axial eccentric load are investigated by using the stress distribution diagram of steel tube concrete and the I-shaped CFRP profiles. In this paper, the main parameters; eccentric ratio, steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate of the specimens were investigated to know the mechanical behavior of them. The interaction between the steel tube and the concrete interface at different characteristic points of the composite columns were analyzed. The results showed that the ultimate bearing capacity of the concrete-filed square steel tube with inner I-shaped CFRP profiles short columns under bi-axial eccentric load decrease with the increase of eccentric ratio, the ultimate bearing capacity of the composite columns increase with the increase of steel ratio, steel yield strength, concrete compressive strength and CFRP distribution rate. The contact pressure between the steel tube and the concrete decreased from the corner zone to the flat zone, and the contact pressure decreased from the mid-height cross section to other sections.


Sign in / Sign up

Export Citation Format

Share Document