food processing
Recently Published Documents


TOTAL DOCUMENTS

5987
(FIVE YEARS 1649)

H-INDEX

108
(FIVE YEARS 15)

2022 ◽  
Vol 10 (1) ◽  
pp. 162
Author(s):  
Felice Panebianco ◽  
Selene Rubiola ◽  
Pierluigi Aldo Di Ciccio

Managing spoilage and pathogenic bacteria contaminations represents a major challenge for the food industry, especially for the dairy sector. Biofilms formed by these microorganisms in food processing environment continue to pose concerns to food manufacturers as they may impact both the safety and quality of processed foods. Bacteria inside biofilm can survive in harsh environmental conditions and represent a source of repeated food contamination in dairy manufacturing plants. Among the novel approaches proposed to control biofilm in food processing plants, the ozone treatment, in aqueous or gaseous form, may represent one of the most promising techniques due to its antimicrobial action and low environmental impact. The antimicrobial effectiveness of ozone has been well documented on a wide variety of microorganisms in planktonic forms, whereas little data on the efficacy of ozone treatment against microbial biofilms are available. In addition, ozone is recognized as an eco-friendly technology since it does not leave harmful residuals in food products or on contact surfaces. Thus, this review intends to present an overview of the current state of knowledge on the possible use of ozone as an antimicrobial agent against the most common spoilage and pathogenic microorganisms, usually organized in biofilm, in dairy manufacturing plants.


2022 ◽  
Vol 14 (2) ◽  
pp. 849
Author(s):  
Angela Fadda ◽  
Daniele Sanna ◽  
El Hassan Sakar ◽  
Said Gharby ◽  
Maurizio Mulas ◽  
...  

To meet consumers’ demand for natural foods, edible oil producers and food processing industries are searching for alternatives to synthetic antioxidants to protect oils against oxidation. Antioxidant compounds extracted from different plant parts (e.g., flowers, leaves, roots, and seeds) or sourced from agri-food industries, including residues left after food processing, attract consumers for their health properties and natural origins. This review, starting from a literature research analysis, highlights the role of natural antioxidants in the protection of edible oils against oxidation, with an emphasis on the emerging and sustainable strategies to preserve oils against oxidative damage. Sustainability and health are the main concerns of food processing industries. In this context, the aim of this review is to highlight the emerging strategies for the enrichment of edible oils with biomolecules or extracts recovered from plant sources. The use of extracts obtained from vegetable wastes and by-products and the blending with oils extracted from various oil-bearing seeds is also pointed out as a sustainable approach. The safety concerns linked to the use of natural antioxidants for human health are also discussed. This review, using a multidisciplinary approach, provides an updated overview of the chemical, technological, sustainability, and safety aspects linked to oil protection.


Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 35
Author(s):  
Hugo Pérez ◽  
Gregorio Vargas ◽  
Rodolfo Silva

In humid environments, the formation of biofilms and microfouling are known to be the detrimental processes that first occur on stainless steel surfaces. This is known as biofouling. Subsequently, the conditions created by metabolites and the activity of organisms trigger corrosion of the metal and accelerate corrosion locally, causing a deterioration in, and alterations to, the performance of devices made of stainless steel. The microorganisms which thus affect stainless steel are mainly algae and bacteria. Within the macroorganisms that then damage the steel, mollusks and crustaceans are the most commonly observed. The aim of this review was to identify the mechanisms involved in biofouling on stainless steel and to evaluate the research done on preventing or mitigating this problem using nanotechnology in humid environments in three areas of human activity: food manufacturing, the implantation of medical devices, and infrastructure in marine settings. Of these protective processes that modify the steel surfaces, three approaches were examined: the use of inorganic nanoparticles; the use of polymeric coatings; and, finally, the generation of nanotextures.


Discover Food ◽  
2022 ◽  
Vol 2 (1) ◽  
Author(s):  
R. L. Bailone ◽  
R. C. Borra ◽  
H. C. S. Fukushima ◽  
L. K. Aguiar

AbstractDue to the significant growing demand for water, it is urgent to those in the food industry to consider a more rational and sustainable use of such a scarce natural resource. This chapter highlights alternative food processing methods that contemplate recycling and reusing water. Based on a systematic literature review, it highlights the adoption of cleaner production methods. The chapter focus on the meat and fresh produce sectors where evidence shows that water sustainability related methods is the most needed. Suggestions are proposed to minimize water waste through the treatment of effluents and decrease the impact of effluent pollution on the environment. In so doing, clear environmental and economic benefits could be achieved through the reduction of costs and value-adding to the final product. Yet, the implementation of Cleaner Production Methods would require support from the industry, policymakers, and consumers to encourage the recycling and reuse of water.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 157
Author(s):  
Korrie Pol ◽  
Marie-Luise Puhlmann ◽  
Monica Mars

L-arabinose is a bio-active compound derived from the side-streams of plant food processing. L-arabinose lowers glycemic and insulinemic responses when added to simple water-based sugary liquids. However, the effect in more complex foods, including fat and starch, is inconsistent. This study assessed the effect of fat or starch in a sugary drink on the efficacy of L-arabinose. Twenty-three healthy volunteers (12 female/11 male; aged 24 ± 3 years; BMI 23 ± 3 kg/m2) participated in a randomised cross-over trial with six drinks: control: 50 g sucrose in water; fat: control + 22 g oil; starch: control + 50 g starch; and all three with and without the addition of 5 g L-arabinose. The addition of L-arabinose to the control drink lowered glucose and insulin peaks by 15% and 52%; for the fat drink by 8% and 45%; and for the starch drink by 7% and 29%. For all three drinks, adding L-arabinose increased glucagon-like peptide 1 (GLP-1) responses and lowered Glucose-dependent insulinotropic polypeptide (GIP) responses. Despite adding large quantities of starch and fat to sugary drinks, L-arabinose significantly lowered postprandial glycemic and insulinemic responses in healthy subjects. These findings suggest that L-arabinose can be functional in more complex foods; however, the factors affecting its efficacy in solid food matrices need to be studied in more detail.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 119
Author(s):  
Andrea Smith ◽  
Xin Dong ◽  
Vijaya Raghavan

Molecular dynamics (MD) simulation is a particularly useful technique in food processing. Normally, food processing techniques can be optimized to favor the creation of higher-quality, safer, more functional, and more nutritionally valuable food products. Modeling food processes through the application of MD simulations, namely, the Groningen Machine for Chemical Simulations (GROMACS) software package, is helpful in achieving a better understanding of the structural changes occurring at the molecular level to the biomolecules present in food products during processing. MD simulations can be applied to define the optimal processing conditions required for a given food product to achieve a desired function or state. This review presents the development history of MD simulations, provides an in-depth explanation of the concept and mechanisms employed through the running of a GROMACS simulation, and outlines certain recent applications of GROMACS MD simulations in the food industry for the modeling of proteins in food products, including peanuts, hazelnuts, cow’s milk, soybeans, egg whites, PSE chicken breast, and kiwifruit.


Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 122
Author(s):  
Prasad Chavan ◽  
Pallavi Sharma ◽  
Sajeev Rattan Sharma ◽  
Tarsem Chand Mittal ◽  
Amit K. Jaiswal

The use of non-thermal processing technologies has grown in response to an ever-increasing demand for high-quality, convenient meals with natural taste and flavour that are free of chemical additions and preservatives. Food processing plays a crucial role in addressing food security issues by reducing loss and controlling spoilage. Among the several non-thermal processing methods, ultrasound technology has shown to be very beneficial. Ultrasound processing, whether used alone or in combination with other methods, improves food quality significantly and is thus considered beneficial. Cutting, freezing, drying, homogenization, foaming and defoaming, filtration, emulsification, and extraction are just a few of the applications for ultrasound in the food business. Ultrasounds can be used to destroy germs and inactivate enzymes without affecting the quality of the food. As a result, ultrasonography is being hailed as a game-changing processing technique for reducing organoleptic and nutritional waste. This review intends to investigate the underlying principles of ultrasonic generation and to improve understanding of their applications in food processing to make ultrasonic generation a safe, viable, and innovative food processing technology, as well as investigate the technology’s benefits and downsides. The breadth of ultrasound’s application in the industry has also been examined. This will also help researchers and the food sector develop more efficient strategies for frequency-controlled power ultrasound in food processing applications.


Sign in / Sign up

Export Citation Format

Share Document