Self-excited vibration of the shell-liquid coupled system induced by dry friction

1995 ◽  
Vol 11 (4) ◽  
pp. 373-382 ◽  
Author(s):  
Liu Xijun ◽  
Wang Dajun ◽  
Chen Yushu

2011 ◽  
Vol 66-68 ◽  
pp. 933-936
Author(s):  
Xian Jie Meng

A one degree of freedom nonlinear dynamics model of self-excited vibration induced by dry-friction was built firstly, the numerical method was taken to study the impacts of structure parameters on self-excited vibration. The calculation result shows that the variation of stiffness can change the vibration amplitude and frequency of the self-excited vibration, but can not eliminate it, Along with the increase of system damping the self-excite vibration has the weakened trend and there a ritical damping, when damping is greater than it the self-excite vibration will be disappeared.





Author(s):  
Miao Li ◽  
Xiaohao Chen ◽  
Shihui Luo ◽  
Weihua Ma ◽  
Cheng Lei ◽  
...  

Levitation stability is the very basis for the dynamic operation of Electromagnetic Suspension (EMS) medium-low speed maglev trains (MSMT). However, self-excited vibration tends to occur when the vehicle is standing still above the lightweight lines, which remains a major constraint to the promotion of medium-low speed maglev technology. In order to study the vertical vibration characteristics of the coupled system of MSMT when it is standing still above lightweight lines, levitation tests were carried out on two types of steel beams: steel beam and active girder of the turnout, with a newly developed maglev vehicle using levitation frames with mid-set air spring. Firstly, modal tests were carried out on the steel beam to determine its natural vibration characteristics; secondly, the acceleration signals and the dynamic displacement signals of the air spring obtained at each measurement point were analyzed in detail in both the time and frequency domains, and the vertical ride comfort was assessed by means of the calculated Sperling index. Subsequently, theoretical explanations were given for the occurrence of self-excited vibration of coupled system from the perspective of the vehicle-to-guideway vibration energy input. Results show that the eigen frequencies of the vehicle on the steel beam and the turnout are 9.65 Hz and 2.15 Hz, respectively, the former being close to the natural frequency of the steel beam while the latter being close to the natural frequency of the air spring suspension system, thus causing the self-excited vibration of the coupled system. It is recommended to either avoid the main eigen frequencies of the coupled system or to increase the damping of the corresponding vibration modes to guarantee a reliable coupled system for its long-term performance. These results may provide valuable references for the optimal design of medium-low speed maglev systems.



Author(s):  
Chang Wang ◽  
Jun Liu ◽  
Zhiwei Luo

When rotating machinery is operated above the major critical speed, self-excited vibrations appear due to internal friction of the shaft. Internal frictions are classified into hysteretic damping due to the friction in the shaft material and structural damping due to the dry friction between the shaft and the mounted elements. In this paper, a method to suppress the self-excited vibration using leaf springs are proposed. The structural damping is considered as the internal damping. The characteristics of a rotor with leaf springs are investigated systematically by using simulative and theoretical analyses. The validity of the proposed method is also proved by experiments.



2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Daogao Wei ◽  
Ke Xu ◽  
Yibin Jiang ◽  
Changhe Chen ◽  
Wenjing Zhao ◽  
...  

Multiaxle steering is widely used in commercial vehicles. However, the mechanism of the self-excited shimmy produced by the multiaxle steering system is not clear until now. This study takes a dual-front axle heavy truck as sample vehicle and considers the influences of mid-shift transmission and dry friction to develop a 9 DOF dynamics model based on Lagrange’s equation. Based on the Hopf bifurcation theorem and center manifold theory, the study shows that dual-front axle shimmy is a self-excited vibration produced from Hopf bifurcation. The numerical method is adopted to determine how the size of dry friction torque influences the Hopf bifurcation characteristics of the system and to analyze the speed range of limit cycles and numerical characteristics of the shimmy system. The consistency of results of the qualitative and numerical methods shows that qualitative methods can predict the bifurcation characteristics of shimmy systems. The influences of the main system parameters on the shimmy system are also discussed. Improving the steering transition rod stiffness and dry friction torque and selecting a smaller pneumatic trail and caster angle can reduce the self-excited shimmy, reduce tire wear, and improve the driving stability of vehicles.



2011 ◽  
Vol 295-297 ◽  
pp. 2223-2226
Author(s):  
Xian Jie Meng

A one degree of freedom nonlinear dynamics model of self-excited vibration induced by dry-friction is built firstly, the numerical method is taken to study the impacts of dynamics parameters on self-excited vibration. The calculation result shows that Along with the variation of system dynamics parameters such as initial velocity or normal pressure the self-excite vibration has the weakened trend or the enhanced trend, so the self-excite vibration could be controled through the control of dynamics parameters.



1998 ◽  
Vol 14 (4) ◽  
pp. 319-327 ◽  
Author(s):  
Liu Xijun ◽  
Wang Dajun ◽  
Chen Yushu


2006 ◽  
Vol 72 (715) ◽  
pp. 690-697 ◽  
Author(s):  
Yusuke WATANABE ◽  
Yousuke KAMI ◽  
Takuzo IWATSUBO


Sign in / Sign up

Export Citation Format

Share Document