Self-excited vibration caused by dry friction between two elastic structures

1998 ◽  
Vol 14 (4) ◽  
pp. 319-327 ◽  
Author(s):  
Liu Xijun ◽  
Wang Dajun ◽  
Chen Yushu

2001 ◽  
Vol 17 (4) ◽  
pp. 340-347
Author(s):  
Liu Xijun ◽  
Wang Dajun ◽  
Chen Yushu ◽  
Zhang Li ◽  
Huang Qinghua ◽  
...  


2011 ◽  
Vol 66-68 ◽  
pp. 933-936
Author(s):  
Xian Jie Meng

A one degree of freedom nonlinear dynamics model of self-excited vibration induced by dry-friction was built firstly, the numerical method was taken to study the impacts of structure parameters on self-excited vibration. The calculation result shows that the variation of stiffness can change the vibration amplitude and frequency of the self-excited vibration, but can not eliminate it, Along with the increase of system damping the self-excite vibration has the weakened trend and there a ritical damping, when damping is greater than it the self-excite vibration will be disappeared.



Author(s):  
Walter Sextro

Abstract In many technical contacts energy is dissipated because of dry friction and relative motion. This can be used to reduce the vibration amplitudes. For example, shrouds with friction interfaces are used to reduce the dynamic stresses in turbine blades. The three-dimensional motion of the blades results in a three-dimensional relative motion of the contact planes. The developed Point-Contact-Model is used to calculate the corresponding tangential and normal forces for each contact element. This Point-Contact-Model includes the roughness of the contact surfaces, the normal pressure distribution due to roughness, the stiffness in normal and tangential direction and dry friction. An experiment with two non-Hertzian contacts is used to verify the developed contact model. The comparison between measured and calculated frequency response functions for three-dimensional forced vibrations of the elastic structures shows a very good agreement.



Author(s):  
Chao Xu ◽  
Zhengzhong Wang ◽  
Baohui Li

Determination of the regions of dynamic instability has been an important issue for elastic structures. Under the extreme climate, the external load acting on structures is becoming more and more complicated, which can induce dynamic instability of elastic structures. In this study, we explore the dynamic instability and response characteristics of simply supported beams under multi-harmonic parametric excitation. A numerical approach for determining the instability regions under multi-harmonic parametric excitation is developed here by examining the eigenvalues of characteristic exponents of the monodromy matrix based on the Floquet theorem, and the fourth-order Runge–Kutta method is used to calculate the dynamic responses. The accuracy of the method is verified by the comparison with classical approximate boundary formulas of dynamic instability regions. The numerical results reveal that Bolotin’s approximate formulas are only applicable to the low-order instability regions with a small value of the excitation parameter of simple parametric resonance. Multi-harmonic parametric excitation can significantly change the dynamic instability regions, it may cause parametric resonance on beams for longitudinal complex periodic loads. The influence of frequency and number of multiply harmonics on the parametrically excited vibration of the beam is explored. High-order harmonics with low-frequency have positive effects on the stable response characteristics for multi-harmonic parametric excitation. This paper provides a new perspective for the vibration suppression of parametric excitation. The developed procedure can be used for multi-degree-of-freedom (MDOF) systems under complex excitation (e.g. tsunami waves and strong winds).



1995 ◽  
Vol 11 (4) ◽  
pp. 373-382 ◽  
Author(s):  
Liu Xijun ◽  
Wang Dajun ◽  
Chen Yushu


Author(s):  
Chang Wang ◽  
Jun Liu ◽  
Zhiwei Luo

When rotating machinery is operated above the major critical speed, self-excited vibrations appear due to internal friction of the shaft. Internal frictions are classified into hysteretic damping due to the friction in the shaft material and structural damping due to the dry friction between the shaft and the mounted elements. In this paper, a method to suppress the self-excited vibration using leaf springs are proposed. The structural damping is considered as the internal damping. The characteristics of a rotor with leaf springs are investigated systematically by using simulative and theoretical analyses. The validity of the proposed method is also proved by experiments.



2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Daogao Wei ◽  
Ke Xu ◽  
Yibin Jiang ◽  
Changhe Chen ◽  
Wenjing Zhao ◽  
...  

Multiaxle steering is widely used in commercial vehicles. However, the mechanism of the self-excited shimmy produced by the multiaxle steering system is not clear until now. This study takes a dual-front axle heavy truck as sample vehicle and considers the influences of mid-shift transmission and dry friction to develop a 9 DOF dynamics model based on Lagrange’s equation. Based on the Hopf bifurcation theorem and center manifold theory, the study shows that dual-front axle shimmy is a self-excited vibration produced from Hopf bifurcation. The numerical method is adopted to determine how the size of dry friction torque influences the Hopf bifurcation characteristics of the system and to analyze the speed range of limit cycles and numerical characteristics of the shimmy system. The consistency of results of the qualitative and numerical methods shows that qualitative methods can predict the bifurcation characteristics of shimmy systems. The influences of the main system parameters on the shimmy system are also discussed. Improving the steering transition rod stiffness and dry friction torque and selecting a smaller pneumatic trail and caster angle can reduce the self-excited shimmy, reduce tire wear, and improve the driving stability of vehicles.





2011 ◽  
Vol 295-297 ◽  
pp. 2223-2226
Author(s):  
Xian Jie Meng

A one degree of freedom nonlinear dynamics model of self-excited vibration induced by dry-friction is built firstly, the numerical method is taken to study the impacts of dynamics parameters on self-excited vibration. The calculation result shows that Along with the variation of system dynamics parameters such as initial velocity or normal pressure the self-excite vibration has the weakened trend or the enhanced trend, so the self-excite vibration could be controled through the control of dynamics parameters.



Sign in / Sign up

Export Citation Format

Share Document