eigen frequencies
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 25)

H-INDEX

6
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7409
Author(s):  
Marcin Bochenski ◽  
Jaroslaw Gawryluk ◽  
Andrzej Teter

In this study, we discuss the effects of the diameter and position of a hole on the dynamic response of a thin-walled cantilever beam made of carbon-epoxy laminate. Eigen-frequencies and corresponding global and local eigen-modes were considered, where deformations of the beam wall were dominant, without significant deformation of the beam axis. The study was focused on the circumferentially uniform stiffness (CUS) beam configuration. The laminate layers were arranged as [90/15(3)/90/15(3)/90]T. The finite element method was employed for numerical tests, using the Abaqus software package. Moreover, a few numerical results of the structure’s behaviour, with and without a hole, were verified experimentally. The experimental eigen-frequencies and the corresponding modes were obtained using an experimental modal analysis, comprising the LMS system with modal hammer. We found that the size and location of the hole affected the eigen-frequencies and corresponding modes. Furthermore, even a small hole in a beam could significantly change the shape of its local modes. The numerical and experimental results were observed to have high qualitative compliance.


Author(s):  
Seema Saini ◽  
Sunil Kumar ◽  
Vineet Bhatt ◽  
Pradeep Bedi

Eigen-frequencies (EF) of non–radial modes (NRM) of pulsations of differentially rotating (D R) and tidally distorted (T D) stellar models by considering the effect of mass variation (MV) on its equi-potentials surfaces inside a star. The method utilizes an averaging proposal of Kippenhahn and Thomas (K and T) with conjunction of the concept of Roche-equipotential. The study accolades and corrects earlier studies of non-radial (NR) pulsations of DR and TD stellar structures of different natures such as radial and non-radial oscillations, X-ray, gamma ray and other electromagnetic disturbances. The reflection of the work comes from the requirements of the inclusion of non-uniform densities that yield Lane-Emden equation to have reliable results up to second order disturbances.


Author(s):  
Miao Li ◽  
Xiaohao Chen ◽  
Shihui Luo ◽  
Weihua Ma ◽  
Cheng Lei ◽  
...  

Levitation stability is the very basis for the dynamic operation of Electromagnetic Suspension (EMS) medium-low speed maglev trains (MSMT). However, self-excited vibration tends to occur when the vehicle is standing still above the lightweight lines, which remains a major constraint to the promotion of medium-low speed maglev technology. In order to study the vertical vibration characteristics of the coupled system of MSMT when it is standing still above lightweight lines, levitation tests were carried out on two types of steel beams: steel beam and active girder of the turnout, with a newly developed maglev vehicle using levitation frames with mid-set air spring. Firstly, modal tests were carried out on the steel beam to determine its natural vibration characteristics; secondly, the acceleration signals and the dynamic displacement signals of the air spring obtained at each measurement point were analyzed in detail in both the time and frequency domains, and the vertical ride comfort was assessed by means of the calculated Sperling index. Subsequently, theoretical explanations were given for the occurrence of self-excited vibration of coupled system from the perspective of the vehicle-to-guideway vibration energy input. Results show that the eigen frequencies of the vehicle on the steel beam and the turnout are 9.65 Hz and 2.15 Hz, respectively, the former being close to the natural frequency of the steel beam while the latter being close to the natural frequency of the air spring suspension system, thus causing the self-excited vibration of the coupled system. It is recommended to either avoid the main eigen frequencies of the coupled system or to increase the damping of the corresponding vibration modes to guarantee a reliable coupled system for its long-term performance. These results may provide valuable references for the optimal design of medium-low speed maglev systems.


2021 ◽  
Vol 6 (2) ◽  
pp. 68-75
Author(s):  
Neno Ruseno

The modal analysis deals with the dynamic behavior of mechanical structures under the dynamic vibration. This study aims to analyze the vibration characteristic of the blended wing-body Unmanned Aerial Vehicle (UAV) using modal analysis. The numerical method is used to calculate the eigen frequencies of the system. The COMSOL Multiphysics is selected as the Finite Element Method (FEM) software to simulate the study. The resulted eigen frequencies are 278.05 Hz, 721.28 Hz, 816.39 Hz, 1601.7 Hz, 1699.5 Hz, and 1855.5 Hz. The study also evaluates the displacement of the leading edge of the wing in all axes to understand the modal shapes. The modal shapes found are updrift, swift back, flapping vertical, flapping horizontal, flapping opposite horizontal and flapping more wave in horizontal movement. The comparison of resulted eigen frequencies with a conventional aircraft wing is conducted to understand the difference in its vibration characteristics.


Author(s):  
A. A. Gavrilov ◽  
G. I. Grebenyuk ◽  
V. I. Maksak ◽  
N. A. Morozov

The paper presents the development of approaches to the crack detection in metal rod structures based on the analysis of the lowest eigen-frequency modes. Full-scale experiments and numerical calculations are carried out, and the obtained results are compared. A vibration analyzer is used for full-scale experiments, and numerical calculations are performed by using Autodesk Inventor. With regard to the internal friction, the antinodes of various vibration forms were identified using a specially developed program. The model includes sensors for the the field experiment as masses affecting the frequency-response characteristics. The dependences are obtained for eigen-frequencies in the presence of cracks and for the crack locations. The polynomial dependences of the crack location on the lowest eigen-frequency modes of the rod can be used to analyze the crack position of in cantilever beams.


Author(s):  
Petr Hrubý ◽  
Tomáš Náhlík

The presented paper focuses to rotating components of mechanical constructions. The problem of the spatial combined bending-gyratory vibration and calculation of the Eigen frequencies is studied. The model of Cardan Mechanism is solved by the transfer matrix method. Transfer matrices were derived for shaft, concentrated mass and elastic bearing. The physical and mechanical properties of each part of the mechanism are hidden in these matrices. A procedure for calculating Eigen frequencies was proposed.


Author(s):  
Gennadi I. Mikhasev ◽  

Free high-frequency longitudinal vibrations of an inhomogeneous nanosized rod are studied on the basis of the nonlocal theory of elasticity. The upper part of spectrum with the wavelength comparable to the internal characteristic dimension of a nanorod is examined. An equations in the integral form with the Helmholtz kernel, incorporating both local and nonlocal phases, is used as the constitutive one. The original integro-differential equation is reduced to the forth-order differential equation with variable coefficients, the pair of additional boundary conditions being deduced. UsingWKB-method, a solution of the boundaryvalue problem is constructed in the form of the superposition of a main solution and edge effect integrals. As an alternative model, we consider the purely nonlocal (one-phase) differential model which allows estimating the upper part of spectrum of eigen-frequencies. Considering the nanorod with a variable cross-section area, we revealed a fair convergence of eigen-frequencies found in the framework of two models when the local fraction in the two-phase model vanishes.


Mechanika ◽  
2020 ◽  
Vol 26 (4) ◽  
pp. 318-324
Author(s):  
Rimvydas GAIDYS ◽  
Darius ŽIŽYS ◽  
Paulius SKĖRYS ◽  
Audronė LUPEIKIENĖ

As the use of renewable energy is increasing exponentially all around the world, the micro energy sources are no different. One of renewable micro energy generator is transducer which can make electricity from the relative displacement present within the system or the mechanical strain. A technique was created to maximize the collection of the electricity generated from a piezoelectric fiber, based on modes of transversal vibration. Created the numerical and computational models of the dynamic element's shape advancement issue. Normal strain top generation was expanded by 49%. The energy rise was 16%. The exploratory stands and strategies were created for the test confirmation of the depicted numerical modeling results. Comes about gotten from the try utilizing the holography method were compared to hypothetically gotten eigen frequencies and mode shapes, and the mistake does not surpass 3%.


Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 2
Author(s):  
Luis M. Hervella-Nieto ◽  
Andrés Prieto ◽  
Sara Recondo

During the last decade, several authors have addressed that the Perfectly Matched Layers (PML) technique can be used not only for the computation of the near-field in time-dependent and time-harmonic scattering problems, but also to compute numerically the resonances in open cavities. Despite such complex resonances are not natural eigen-frequencies of the physical system, the numerical determination of this kind of eigenvalues provides information about the model, what can be used in further applications. The present work will be focused on two main specific goals—firstly, the mathematical analysis of the frequency-dependent highly non-linear eigenvalue problem associated to the computation of resonances with the standard PML technique. Second, the implementation of a robust numerical method to approximate resonances in open cavities.


2020 ◽  
Vol 9 (3) ◽  
pp. 119-126
Author(s):  
Triantafyllos K. Makarios

 In the present paper, an equivalent Three Degree of Freedom (DoF) system of a bi-hinge beam, which has infinity number of degree of freedoms because possesses distributed mass and stiffness along its length, is presented. Based on the vibration partial differential equation of the abovementioned bi-hinge beam, an equivalent, mathematically, three-degree of freedom system, where the equivalent mass matrix is analytically formulated with reference on specific mass locations. Using the Three DoF model, the first three fundamental mode-shapes of the real beam can be identified. Furthermore, taking account the 3x3 mass matrix, it is possible to estimate the possible beam damages using a known technique of identification mode-shapes via records of response accelerations. Moreover, the way of instrumentation with a local network by three accelerometers is shown. It is worth noting this technique can be applied on bridges consist of bays with two hinges at its end sections, supported on elastometallic bearings, where the sense of concentrated mass is fully absent from the beam.


Sign in / Sign up

Export Citation Format

Share Document