The drift of zooplankton in a lake-outlet (Glatt) in a day-night-rhythm depending from the water level

1988 ◽  
Vol 50 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Beatrice Jann ◽  
Hansrudolf Bürgi
Keyword(s):  
1988 ◽  
Vol 25 (8) ◽  
pp. 1175-1183 ◽  
Author(s):  
J. E. Flint ◽  
R. W. Dalrymple ◽  
J. J. Flint

The sequence of units (from the base up) in the Sixteen Mile Creek lagoon (Lake Ontario) mimics the longitudinal sequence of surficial environments: pink silt—overbank (flood plain – dry marsh); bottom sand—stream channel and beach; orange silt—marsh; gyttja—wet marsh and very shallow (deltaic) lagoon; and brown and grey clay—open-water lagoon. This entire sequence accumulated over the last 4200 years under slowly deepening, transgressive conditions caused by the isostatic rise of the lake outlet. Land clearing by European settlers dramatically increased the supply of clastic sediment and terminated the deposition of the organic-rich silty clays (gyttja) that make up most of the lagoon fill.Because the gyttja and beach sand are interpreted to have accumulated in water depths of less than 0.5 m, the elevation–time plot of 14C dates from these units can be used to reconstruct a very closely constrained lake-level curve. The data indicate that water levels have risen at an average rate of 0.25 cm/a over the last 3300 years as a result of differential, isostatic rebound. Superimposed on this trend are water-level oscillations with amplitudes on the order of 1 m and periods of several hundred years. These oscillations are synchronous and in phase with water-level fluctuations in Lake Michigan, and with a variety of other climatic variations in North America and Europe. We propose, therefore, that the water-level oscillations are a result of long-term, climatically produced variations in precipitation in the Great Lakes drainage basin.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 917 ◽  
Author(s):  
Junxiang Cheng ◽  
Ligang Xu ◽  
Wenjuan Feng ◽  
Hongxiang Fan ◽  
Jiahu Jiang

The complex water regimes and fragile ecological systems in Dongting Lake and Poyang Lake, located in the middle reach of the Yangtze River, have been significantly affected by regional climate change and anthropogenic activities. The hydrological data from the outlets of Dongting Lake (Chenglingji station) during 1955–2016 and Poyang Lake (Hukou station) during 1953–2014 were divided into two periods: the pre-impact period and the post-impact period. Four statistical tests were used to identify the change years: 1979 at Chenglingji and 2003 at Hukou. The indicators of hydrologic alteration and range of variability approach were used to assess alterations in water level regimes. Results show that the severely altered indicators were January water level at both lake outlets, and 1-, 3-, 7- and 30-day minimum water level at Chenglingji, with the degree of hydrological alteration being larger than 85%. The overall degrees of hydrological alteration at Chenglingji and Hukou were 52.6% and 38.2%, respectively, indicating that water level regimes experienced moderate alteration and low alteration or that ecosystems were at moderate risk and low risk, respectively. Changes in water level regimes were jointly affected by climate change and anthropogenic activities. Water level regimes at Dongting Lake outlet were mainly affected by increased rainfall and dam regulation. Decreased rainfall, dam regulation, and sediment erosion and deposition were the main impact factors of water level regimes at Poyang Lake outlet. These changes in water level regimes have greatly influenced both aquatic and terrestrial ecosystems, especially for fish and vegetation communities. This study is beneficial for water resource management and ecosystems protection under regional changes.


Author(s):  
D.S. Rakisheva ◽  
◽  
B.G. Mukanova ◽  
I.N. Modin ◽  
◽  
...  

Numerical modeling of the problem of dam monitoring by the Electrical Resistivity Tomography method is carried out. The mathematical model is based on integral equations with a partial Fourier transform with respect to one spatial variable. It is assumed that the measurement line is located across the dam longitude. To approximate the shape of the dam surface, the Radial Basic Functions method is applied. The influence of locations of the water-dam, dam-basement, basement-leakage boundaries with respect to the sounding installation, which is partially placed under the headwater, is studied. Numerical modeling is carried out for the following varied parameters: 1) water level at the headwater; 2) the height of the leak; 3) the depth of the leak; 4) position of the supply electrode; 5) water level and leaks positions are changing simultaneously. Modeling results are presented in the form of apparent resistivity curves, as it is customary in geophysical practice.


Sign in / Sign up

Export Citation Format

Share Document