Low-frequency waves observed in the vicinity of the Earth's bow shock

1979 ◽  
Vol 2 (6) ◽  
pp. 789-814 ◽  
Author(s):  
V. Formisano
1997 ◽  
Vol 20 (4-5) ◽  
pp. 703-706 ◽  
Author(s):  
K. Meziane ◽  
C. Mazelle ◽  
C. d'Uston ◽  
H. Rème ◽  
R.P. Lin ◽  
...  

1995 ◽  
Vol 15 (8-9) ◽  
pp. 285-296 ◽  
Author(s):  
C.T Russell ◽  
M.H Farris

2020 ◽  
Author(s):  
Markus Battarbee ◽  
Xochitl Blanco-Cano ◽  
Lucile Turc ◽  
Primož Kajdič ◽  
Andreas Johlander ◽  
...  

Abstract. The foreshock is a region of space upstream of the Earth's bow shock extending along the interplanetary magnetic field. It is permeated by shock-reflected ions and electrons, low-frequency waves, and various plasma transients. We investigate the extent of the He2+ foreshock using Vlasiator, a global hybrid-Vlasov simulation. We perform the first numerical global survey of the helium foreshock, and interpret some historical foreshock observations in a global context. The foreshock edge is populated by both proton and helium field-aligned beams, with the proton foreshock extending slightly further into the solar wind than the helium foreshock, and both extend well beyond the ULF wave foreshock. We compare our simulation results with MMS HPCA measurements, showing how the gradient of suprathermal ion densities at the foreshock crossing can vary between events. Our analysis suggests that the IMF cone angle and the associated shock obliquity gradient can play a role in explaining this differing behaviour. We also investigate wave-ion-interactions with wavelet analysis and show that the dynamics and heating of He2+ must result from proton-driven ULF waves. Enhancements in ion agyrotropy are found in relation to, e.g., the ion foreshock boundary, the ULF foreshock boundary, and specular reflection of ions at the bow shock. We show that specular reflection can describe many of the foreshock ion VDF enhancements. Wave-wave-interactions deep in the foreshock cause decoherence of wavefronts, allowing He2+ the be scattered less than protons.


1995 ◽  
Vol 22 (2) ◽  
pp. 81-84 ◽  
Author(s):  
T. Sugiyama ◽  
T. Terasawa ◽  
H. Kawano ◽  
T. Yamamoto ◽  
S. Kokubun ◽  
...  

2019 ◽  
Vol 886 (1) ◽  
pp. 53 ◽  
Author(s):  
M. Oka ◽  
F. Otsuka ◽  
S. Matsukiyo ◽  
L. B. Wilson ◽  
M. R. Argall ◽  
...  

2019 ◽  
Vol 37 (5) ◽  
pp. 877-889
Author(s):  
Anatoli A. Petrukovich ◽  
Olga M. Chugunova ◽  
Pavel I. Shustov

Abstract. Observations of Earth's bow shock during high-β (ratio of thermal to magnetic pressure) solar wind streams are rare. However, such shocks are ubiquitous in astrophysical plasmas. Typical solar wind parameters related to high β (here β>10) are as follows: low speed, high density, and a very low interplanetary magnetic field of 1–2 nT. These conditions are usually quite transient and need to be verified immediately upstream of the observed shock crossings. In this report, three characteristic crossings by the Cluster project (from the 22 found) are studied using multipoint analysis, allowing us to determine spatial scales. The main magnetic field and density spatial scale of about a couple of hundred of kilometers generally corresponds to the increased proton convective gyroradius. Observed magnetic variations are different from those for supercritical shocks, with β∼1. Dominant magnetic variations in the shock transition have amplitudes much larger than the background field and have a frequency of ∼ 0.3–0.5 Hz (in some events – 1–2 Hz). The wave polarization has no stable phase and is closer to linear, which complicates the determination of the wave propagation direction. Spatial scales (wavelengths) of variations are within several tens to a couple of hundred of kilometers.


Sign in / Sign up

Export Citation Format

Share Document