low frequency waves
Recently Published Documents


TOTAL DOCUMENTS

411
(FIVE YEARS 51)

H-INDEX

36
(FIVE YEARS 2)

2021 ◽  
Vol 923 (2) ◽  
pp. 185
Author(s):  
Anastasia V. Marchuk ◽  
Charles W. Smith ◽  
Abigale S. Watson ◽  
Matthew R. Argall ◽  
Colin J. Joyce ◽  
...  

Abstract We have surveyed magnetic field data from the Ulysses spacecraft and found examples of magnetic waves with the expected characteristics that point to excitation by newborn pickup He+. With interstellar neutrals as the likely source for the pickup ions, we have modeled the ion production rates and used them to produce wave excitation rates that we compare to the background turbulence rates. The source ions are thought to be always present, but the waves are seen when growth rates are comparable to or exceed the turbulence rates. With the exception of the fast latitude scans, and unlike the waves excited by newborn interstellar pickup H+, the waves are seen throughout the Ulysses orbit.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
N. Romanelli ◽  
G. A. DiBraccio

AbstractStudies of Mercury’s foreshock have analyzed in detail the properties of ultra-low frequency waves. However, an open question remains in regards to understanding favorable conditions for these planetary foreshocks waves. Here, we report that 0.05–0.41 Hz quasi-monochromatic waves are mostly present under quasi-radial and relatively low intensity Interplanetary Magnetic Field, based on 17 Mercury years of MESSENGER Magnetometer data. These conditions are consistent with larger foreshock size and reflection of solar wind protons, their most likely source. Consequently, we find that the wave occurrence rate increases with Mercury’s heliocentric distance. Detection of these waves throughout Mercury’s highly eccentric orbit suggests the conditions for backstreaming protons are potentially present for all of Mercury’s heliocentric distances, despite the relatively low solar wind Alfvén Mach number regime. These results are relevant for planetary magnetospheres throughout the solar system, and the magnetospheres of exoplanets, and provide knowledge of particle acceleration mechanisms occurring inside foreshocks.


2021 ◽  
Vol 2067 (1) ◽  
pp. 012019
Author(s):  
A G Berezutsky ◽  
V N Tishchenko ◽  
A A Chibranov ◽  
I B Miroshnichenko ◽  
Yu P Zakharov ◽  
...  

Abstract In this work, we study the influence of the parameters of a magnetized background plasma on the intensity of whistler waves generated by periodic laser plasma bunches in a magnetic field tube. It is shown that at 0.3 < Lpi > 0.4 Alfvén waves and whistlers are generated. In the region Lpi> 0.5, intense whistlers with an amplitude of δBmax / B0 ∼ 0.24 are generated.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
A.V. Moshkov ◽  

The value and duration of attenuation of low frequency waves (1...10 kHz) in the presence of a strong local disturbance of the atmosphere have been estimated. Sources of significant local disturbances of the atmosphere are, for example, precipitation of energetic particles of radiation belts; electromagnetic pulses of lightning discharges; radiation of powerful low-frequency ground-based transmitters; invasion of large meteors. Strong local disturbances lead to an increase of ionization (concentration of free electrons) of the environment by several orders of magnitude in the region of space whose characteristic dimensions are comparable to the length of the wave (tens and hundreds of kilometers). As such a disturbance, we use the previously developed macroscopic model of an instantaneous, point release of a relatively large amount of energy in the atmosphere below the ionosphere. This model makes it possible to estimate the features of the propagation of low-frequency waves through the disturbed layer of the lower ionosphere by changing only two initial parameters: the disturbance energy and its initial height. It is shown that the attenuation value is almost independent of frequency and geo- and heliophysical conditions. For initial heights up to 50 km, the fading duration does not exceed ~ 2 min. With an increase of the initial altitude, the attenuation in the lower ionosphere becomes extremely large. However, for heights of 50 ... 70 km (depending on the value of energy), the horizontal size of the disturbance decreases significantly, which leads to a decrease in the fading time to tens of seconds for initial heights of more than 80 km.


2021 ◽  
Author(s):  
Mustapha Sadouki

A direct and inverse method is proposed for measuring the thickness and flow resistivity of a rigid air-saturated porous material using acoustic reflected waves at low frequency. The equivalent fluid model is considered. The interactions between the structure and the fluid are taken by the dynamic tortuosity of the medium introduced by Johnson et al. and the dynamic compressibility of the air introduced by Allard. A simplified expression of the reflection coefficient is obtained at very low frequencies domain (Darcy’s regime). This expression depends only on the thickness and flow resistivity of the porous medium. The simulated reflected signal of the direct problem is obtained by the product of the experimental incident signal and the theoretical reflection coefficient. The inverse problem is solved numerically by minimizing between simulated and experimental reflected signals. The tests are carried out using two samples of polyurethane plastic foam with different thicknesses and resistivity. The inverted values of thickness and flow resistivity are compared with those obtained by conventional methods giving good results.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1395
Author(s):  
Danila Kostarev ◽  
Dmitri Klimushkin ◽  
Pavel Mager

We consider the solutions of two integrodifferential equations in this work. These equations describe the ultra-low frequency waves in the dipol-like model of the magnetosphere in the gyrokinetic framework. The first one is reduced to the homogeneous, second kind Fredholm equation. This equation describes the structure of the parallel component of the magnetic field of drift-compression waves along the Earth’s magnetic field. The second equation is reduced to the inhomogeneous, second kind Fredholm equation. This equation describes the field-aligned structure of the parallel electric field potential of Alfvén waves. Both integral equations are solved numerically.


2021 ◽  
Vol 915 (1) ◽  
pp. 64
Author(s):  
Yufei Hao ◽  
Quanming Lu ◽  
Dejin Wu ◽  
San Lu ◽  
Liang Xiang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J.-F. Ripoll ◽  
T. Farges ◽  
D. M. Malaspina ◽  
G. S. Cunningham ◽  
E. H. Lay ◽  
...  

AbstractLightning superbolts are the most powerful and rare lightning events with intense optical emission, first identified from space. Superbolt events occurred in 2010-2018 could be localized by extracting the high energy tail of the lightning stroke signals measured by the very low frequency ground stations of the World-Wide Lightning Location Network. Here, we report electromagnetic observations of superbolts from space using Van Allen Probes satellite measurements, and ground measurements, and with two events measured both from ground and space. From burst-triggered measurements, we compute electric and magnetic power spectral density for very low frequency waves driven by superbolts, both on Earth and transmitted into space, demonstrating that superbolts transmit 10-1000 times more powerful very low frequency waves into space than typical strokes and revealing that their extreme nature is observed in space. We find several properties of superbolts that notably differ from most lightning flashes; a more symmetric first ground-wave peak due to a longer rise time, larger peak current, weaker decay of electromagnetic power density in space with distance, and a power mostly confined in the very low frequency range. Their signal is absent in space during day times and is received with a long-time delay on the Van Allen Probes. These results have implications for our understanding of lightning and superbolts, for ionosphere-magnetosphere wave transmission, wave propagation in space, and remote sensing of extreme events.


Sign in / Sign up

Export Citation Format

Share Document