A Schwarz Lemma for harmonic and hyperbolic-harmonic functions in higher dimensions

1992 ◽  
Vol 77 (1) ◽  
pp. 283-291 ◽  
Author(s):  
B. Burgeth
Filomat ◽  
2020 ◽  
Vol 34 (9) ◽  
pp. 3151-3160
Author(s):  
Ziyan Huang ◽  
Di Zhao ◽  
Hongyi Li

In this paper, we present a boundary Schwarz lemma for pluriharmonic mappings between the unit polydiscs of any dimensions, which extends the classical Schwarz lemma for bounded harmonic functions to higher dimensions.


2017 ◽  
Vol 60 (1) ◽  
pp. 219-224 ◽  
Author(s):  
DAVID KALAJ

AbstractIn this note, we establish a Schwarz–Pick type inequality for holomorphic mappings between unit balls Bn and Bm in corresponding complex spaces. We also prove a Schwarz-Pick type inequality for pluri-harmonic functions.


1970 ◽  
Vol 22 (4) ◽  
pp. 855-862
Author(s):  
Y. K. Kwon ◽  
L. Sario

Representations of harmonic functions by means of integrals taken over the harmonic boundary ΔR of a Riemann surface R enable one to study the classification theory of Riemann surfaces in terms of topological properties of ΔR (cf. [6; 4; 1; 7]). In deducing such integral representations, essential use is made of the fact that the functions in question attain their maxima and minima on ΔR.The corresponding maximum principle in higher dimensions was discussed for bounded harmonic functions in [3]. In the present paper we consider Dirichlet-finite harmonic functions. We shall show that every such function on a subregion G of a Riemannian N-space R attains its maximum and minimum on the set , where ∂G is the relative boundary of G in R and the closures are taken in Royden's compactification R*. As an application we obtain the harmonic decomposition theorem relative to a compact subset K of R* with a smooth ∂(K ∩ R).


2019 ◽  
Vol 124 (1) ◽  
pp. 81-101
Author(s):  
Manfred Stoll

In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\mathbb {B}$ in $\mathbb {R}^n$. Specifically we prove that \[ \mathcal {K}_{n,h}(x,y) = \sum _{\alpha =0}^\infty S_{n,\alpha }(\lvert x\rvert )S_{n,\alpha }(\lvert y\rvert ) Z_\alpha (x,y), \] where the series converges absolutely and uniformly on $K\times \mathbb {B}$ for every compact subset $K$ of $\mathbb {B}$. In the above, $S_{n,\alpha }$ is a hypergeometric function and $Z_\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \[ 0\le \mathcal K_{n,h}(x,y) \le \frac {C_n}{(1-2\langle x,y\rangle + \lvert x \rvert^2 \lvert y \rvert^2)^{n-1}}, \] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\varDelta_h $ on $\mathbb{B} $ with eigenvalue $\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\varDelta_h $ on $\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\varDelta_h $ with eigenvalue $\lambda _\alpha = 4(n-1)^2\alpha (\alpha -1)$, then \[ g(r) = g(0) \frac {p_{n,\alpha }(r^2)}{(1-r^2)^{(\alpha -1)(n-1)}}, \] where $p_{n,\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\alpha }(r^2)$ is a polynomial of degree $2(\alpha -1)(n-1)$.


2020 ◽  
Vol 30 (5) ◽  
Author(s):  
Sirkka-Liisa Eriksson ◽  
Terhi Kaarakka

Abstract We study harmonic functions with respect to the Riemannian metric $$\begin{aligned} ds^{2}=\frac{dx_{1}^{2}+\cdots +dx_{n}^{2}}{x_{n}^{\frac{2\alpha }{n-2}}} \end{aligned}$$ d s 2 = d x 1 2 + ⋯ + d x n 2 x n 2 α n - 2 in the upper half space $$\mathbb {R}_{+}^{n}=\{\left( x_{1},\ldots ,x_{n}\right) \in \mathbb {R}^{n}:x_{n}>0\}$$ R + n = { x 1 , … , x n ∈ R n : x n > 0 } . They are called $$\alpha $$ α -hyperbolic harmonic. An important result is that a function f is $$\alpha $$ α -hyperbolic harmonic íf and only if the function $$g\left( x\right) =x_{n}^{-\frac{ 2-n+\alpha }{2}}f\left( x\right) $$ g x = x n - 2 - n + α 2 f x is the eigenfunction of the hyperbolic Laplace operator $$\bigtriangleup _{h}=x_{n}^{2}\triangle -\left( n-2\right) x_{n}\frac{\partial }{\partial x_{n}}$$ △ h = x n 2 ▵ - n - 2 x n ∂ ∂ x n corresponding to the eigenvalue $$\ \frac{1}{4}\left( \left( \alpha +1\right) ^{2}-\left( n-1\right) ^{2}\right) =0$$ 1 4 α + 1 2 - n - 1 2 = 0 . This means that in case $$\alpha =n-2$$ α = n - 2 , the $$n-2$$ n - 2 -hyperbolic harmonic functions are harmonic with respect to the hyperbolic metric of the Poincaré upper half-space. We are presenting some connections of $$\alpha $$ α -hyperbolic functions to the generalized hyperbolic Brownian motion. These results are similar as in case of harmonic functions with respect to usual Laplace and Brownian motion.


1970 ◽  
Vol 22 (4) ◽  
pp. 847-854 ◽  
Author(s):  
Y. K. Kwon ◽  
L. Sario

Harmonic functions with certain boundedness properties on a given open Riemann surface R attain their maxima and minima on the harmonic boundary ΔB of R. The significance of such maximum principles lies in the fact that the classification theory of Riemann surfaces related to harmonic functions reduces to a study of topological properties of Δ(cf. [11; 8; 3; 12].For the corresponding problem in higher dimensions we shall first show that the complement of ΔR with respect to the Royden boundary ΓR of a Riemannian N-space R is harmonically negligible: given any non-empty compact subset E of ΓR – ΔR there exists an Evans superharmonic function v, i.e., a positive continuous function on R* = R ∪ ΓR, superharmonic on R, with v = 0 on ΔR, v ≡ ∞ on E, and with a finite Dirichlet integral over R.


2011 ◽  
Vol 140 (1) ◽  
pp. 161-165 ◽  
Author(s):  
David Kalaj ◽  
Matti Vuorinen

Sign in / Sign up

Export Citation Format

Share Document