scholarly journals A boundary Schwarz lemma for pluriharmonic mappings between the unit polydiscs of any dimensions

Filomat ◽  
2020 ◽  
Vol 34 (9) ◽  
pp. 3151-3160
Author(s):  
Ziyan Huang ◽  
Di Zhao ◽  
Hongyi Li

In this paper, we present a boundary Schwarz lemma for pluriharmonic mappings between the unit polydiscs of any dimensions, which extends the classical Schwarz lemma for bounded harmonic functions to higher dimensions.

1970 ◽  
Vol 22 (4) ◽  
pp. 855-862
Author(s):  
Y. K. Kwon ◽  
L. Sario

Representations of harmonic functions by means of integrals taken over the harmonic boundary ΔR of a Riemann surface R enable one to study the classification theory of Riemann surfaces in terms of topological properties of ΔR (cf. [6; 4; 1; 7]). In deducing such integral representations, essential use is made of the fact that the functions in question attain their maxima and minima on ΔR.The corresponding maximum principle in higher dimensions was discussed for bounded harmonic functions in [3]. In the present paper we consider Dirichlet-finite harmonic functions. We shall show that every such function on a subregion G of a Riemannian N-space R attains its maximum and minimum on the set , where ∂G is the relative boundary of G in R and the closures are taken in Royden's compactification R*. As an application we obtain the harmonic decomposition theorem relative to a compact subset K of R* with a smooth ∂(K ∩ R).


1970 ◽  
Vol 22 (4) ◽  
pp. 847-854 ◽  
Author(s):  
Y. K. Kwon ◽  
L. Sario

Harmonic functions with certain boundedness properties on a given open Riemann surface R attain their maxima and minima on the harmonic boundary ΔB of R. The significance of such maximum principles lies in the fact that the classification theory of Riemann surfaces related to harmonic functions reduces to a study of topological properties of Δ(cf. [11; 8; 3; 12].For the corresponding problem in higher dimensions we shall first show that the complement of ΔR with respect to the Royden boundary ΓR of a Riemannian N-space R is harmonically negligible: given any non-empty compact subset E of ΓR – ΔR there exists an Evans superharmonic function v, i.e., a positive continuous function on R* = R ∪ ΓR, superharmonic on R, with v = 0 on ΔR, v ≡ ∞ on E, and with a finite Dirichlet integral over R.


1975 ◽  
Vol 56 ◽  
pp. 1-5
Author(s):  
Masaru Hara

Given a harmonic function u on a Riemann surface R, we define a period functionfor every one-dimensional cycle γ of the Riemann surface R. Γx(R) denote the totality of period functions Γu such that harmonic functions u satisfy a boundedness property X. As for X, we let B stand for boundedness, and D for the finiteness of the Dirichlet integral.


2017 ◽  
Vol 60 (1) ◽  
pp. 219-224 ◽  
Author(s):  
DAVID KALAJ

AbstractIn this note, we establish a Schwarz–Pick type inequality for holomorphic mappings between unit balls Bn and Bm in corresponding complex spaces. We also prove a Schwarz-Pick type inequality for pluri-harmonic functions.


1993 ◽  
Vol 132 ◽  
pp. 131-139
Author(s):  
Michihiko Kawamura ◽  
Shigeo Segawa

Consider an end Ω in the sense of Heins (cf. Heins [3]): Ω is a relatively non-compact subregion of an open Riemann surface such that the relative boundary ∂Ω consists of finitely many analytic Jordan closed curves, there exist no non-constant bounded harmonic functions with vanishing boundary values on ∂Ω and Ω has a single ideal boundary component. A density P = P(z)dxdy (z = x + iy) is a 2-form on Ω∩∂Ω with nonnegative locally Holder continuous coefficient P(z).


Sign in / Sign up

Export Citation Format

Share Document