Recent developments on the time-dependent approach to the three dimensional inverse scattering problem

1973 ◽  
Vol 4 (2) ◽  
pp. 157-165 ◽  
Author(s):  
Gustavo Perla Menzala
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dinh-Liem Nguyen ◽  
Trung Truong

AbstractThis paper is concerned with the inverse scattering problem for the three-dimensional Maxwell equations in bi-anisotropic periodic structures. The inverse scattering problem aims to determine the shape of bi-anisotropic periodic scatterers from electromagnetic near-field data at a fixed frequency. The factorization method is studied as an analytical and numerical tool for solving the inverse problem. We provide a rigorous justification of the factorization method which results in the unique determination and a fast imaging algorithm for the periodic scatterer. Numerical examples for imaging three-dimensional periodic structures are presented to examine the efficiency of the method.


1994 ◽  
Vol 347 ◽  
Author(s):  
J.Ch. Bolomey ◽  
N. Joachimowicz

ABSTRACTUntil now, the measurement techniques used for the dielectric characterization of materials require severe limitations in terms of sample shape, size and homogeneity. This paper considers the dielectric permittivity measurement as a non-linear inverse scattering problem. Such an approach allows to identify the quantities to be measured and suggests possible experimental arrangements. The problem is shown to be significantly simplified if the shape of the material is known and if some a priori knowledge of the averaged value of the permittivity in the material under test is available. Two test cases have been selected to illustrate the state of the art in solving such inverse problems. The first one consists of a two-dimensional configuration which is applicable to cylindrical objects, and the second one to a vector three-dimensional configuration applicable, for instance, to cubic samples. The main limitations of such an inverse scattering approach are discussed and expected improvements in the near future are analysed.


Sign in / Sign up

Export Citation Format

Share Document